Suppr超能文献

梦想倡议:一项随机对照试验的研究方案,该试验测试一种集成电子健康记录和社区卫生工作者干预措施,以促进有糖尿病风险的南亚患者减肥。

The DREAM Initiative: study protocol for a randomized controlled trial testing an integrated electronic health record and community health worker intervention to promote weight loss among South Asian patients at risk for diabetes.

作者信息

Lim Sahnah, Wyatt Laura C, Mammen Shinu, Zanowiak Jennifer M, Mohaimin Sadia, Goldfeld Keith S, Shelley Donna, Gold Heather T, Islam Nadia S

机构信息

Department of Population Health, NYU School of Medicine, 180 Madison Avenue, New York, NY, 10016, USA.

Department of Population Health, NYU School of Medicine, 550 First Avenue, New York, NY, 10016, USA.

出版信息

Trials. 2019 Nov 21;20(1):635. doi: 10.1186/s13063-019-3711-y.

Abstract

BACKGROUND

Electronic health record (EHR)-based interventions that use registries and alerts can improve chronic disease care in primary care settings. Community health worker (CHW) interventions also have been shown to improve chronic disease outcomes, especially in minority communities. Despite their potential, these two approaches have not been tested together, including in small primary care practice (PCP) settings. This paper presents the protocol of Diabetes Research, Education, and Action for Minorities (DREAM) Initiative, a 5-year randomized controlled trial integrating both EHR and CHW approaches into a network of PCPs in New York City (NYC) in order to support weight loss efforts among South Asian patients at risk for diabetes.

METHODS/DESIGN: The DREAM Initiative was funded by the National Institute of Diabetes and Digestive and Kidney Diseases (National Institutes of Health). A total of 480 individuals at risk for type 2 diabetes will be enrolled into the intervention group, and an equal number will be included in a matched control group. The EHR intervention components include the provision of technical assistance to participating PCPs regarding prediabetes-related registry reports, alerts, and order sets. The CHW intervention components entail group education sessions on diabetes prevention, including weight loss and nutrition. A mixed-methods approach will be used to evaluate the feasibility, adoption, and impact (≥ 5% weight loss) of the integrated study components. Additionally, a cost effectiveness analysis will be conducted using outcomes, implementation costs, and healthcare claims data to determine the incremental cost per person achieving 5% weight loss.

DISCUSSION

This study will be the first to test the efficacy of an integrated EHR-CHW intervention within an underserved, minority population and in a practical setting via a network of small PCPs in NYC. The study's implementation is enhanced through cross-sector partnerships, including the local health department, a healthcare payer, and EHR vendors. Through use of a software platform, the study will also systematically track and monitor CHW referrals to social service organizations. Study findings, including those resulting from cost-effectiveness analyses, will have important implications for translating similar strategies to other minority communities in sustainable ways.

TRIAL REGISTRATION

This study protocol has been approved and is made available on ClinicalTrials.gov by NCT03188094 as of 15 June 2017.

摘要

背景

基于电子健康记录(EHR)的干预措施,利用登记系统和警报,可以改善初级保健机构中的慢性病护理。社区卫生工作者(CHW)干预措施也已被证明能改善慢性病治疗效果,尤其是在少数族裔社区。尽管这两种方法都有潜力,但尚未一起进行测试,包括在小型初级保健实践(PCP)环境中。本文介绍了少数族裔糖尿病研究、教育与行动(DREAM)倡议的方案,这是一项为期5年的随机对照试验,将EHR和CHW方法整合到纽约市(NYC)的一个初级保健医生网络中,以支持有糖尿病风险的南亚患者的减肥努力。

方法/设计:DREAM倡议由美国国立糖尿病、消化和肾脏疾病研究所(国立卫生研究院)资助。共有480名2型糖尿病风险个体将被纳入干预组,同等数量的个体将被纳入匹配的对照组。EHR干预组件包括就糖尿病前期相关登记报告、警报和医嘱集向参与的初级保健医生提供技术援助。CHW干预组件包括关于糖尿病预防的小组教育课程,包括减肥和营养。将采用混合方法来评估综合研究组件的可行性、采用情况和影响(体重减轻≥5%)。此外,将使用结果、实施成本和医疗保健索赔数据进行成本效益分析,以确定实现5%体重减轻的人均增量成本。

讨论

本研究将是首次在服务不足的少数族裔人群中,通过纽约市的一个小型初级保健医生网络,在实际环境中测试EHR-CHW综合干预措施的疗效。该研究的实施通过跨部门伙伴关系得到加强,包括当地卫生部门、医疗保健支付方和EHR供应商。通过使用软件平台,该研究还将系统地跟踪和监测社区卫生工作者向社会服务组织的转诊情况。研究结果,包括成本效益分析的结果,将对以可持续方式将类似策略推广到其他少数族裔社区具有重要意义。

试验注册

本研究方案已于2017年6月15日获得批准,并在ClinicalTrials.gov上以NCT03188094的编号发布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66df/6868710/eefc2123d5c6/13063_2019_3711_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验