Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853;
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24402-24407. doi: 10.1073/pnas.1910332116. Epub 2019 Nov 21.
Programmable self-assembly of smart, digital, and structurally complex materials from simple components at size scales from the macro to the nano remains a long-standing goal of material science. Here, we introduce a platform based on magnetic encoding of information to drive programmable self-assembly that works across length scales. Our building blocks consist of panels with different patterns of magnetic dipoles that are capable of specific binding. Because the ratios of the different panel-binding energies are scale-invariant, this approach can, in principle, be applied down to the nanometer scale. Using a centimeter-sized version of these panels, we demonstrate 3 canonical hallmarks of assembly: controlled polymerization of individual building blocks; assembly of 1-dimensional strands made of panels connected by elastic backbones into secondary structures; and hierarchical assembly of 2-dimensional nets into 3-dimensional objects. We envision that magnetic encoding of assembly instructions into primary structures of panels, strands, and nets will lead to the formation of secondary and even tertiary structures that transmit information, act as mechanical elements, or function as machines on scales ranging from the nano to the macro.
从宏观到纳米的尺寸范围内,从简单的组件中构建智能、数字化和结构复杂的材料的可编程自组装,仍然是材料科学的一个长期目标。在这里,我们介绍了一种基于信息磁编码的平台,以驱动可编程自组装,该平台可在不同的长度尺度上工作。我们的构建块由带有不同磁偶极子图案的面板组成,这些面板能够进行特定的结合。由于不同面板结合能的比例是不变的,因此这种方法原则上可以应用到纳米尺度。我们使用这些面板的厘米大小的版本,展示了组装的 3 个典型特征:单个构建块的受控聚合;由通过弹性骨架连接的面板组成的 1 维链状结构组装成二级结构;以及 2 维网的层次组装成 3 维物体。我们设想,将组装指令编码到面板、链状结构和网的基本结构中,将导致形成二级甚至三级结构,这些结构可以在从纳米到宏观的范围内传递信息、充当机械元件或作为机器运行。