School of Health and Related Research (ScHARR), University of Sheffield, Regent Court, 30 Regent Street, Sheffield, S1 4DA, UK.
Pharmacoeconomics. 2020 Feb;38(2):193-204. doi: 10.1007/s40273-019-00853-x.
The extrapolation of estimated hazard functions can be an important part of cost-effectiveness analyses. Given limited follow-up time in the sample data, it may be expected that the uncertainty in estimates of hazards increases the further into the future they are extrapolated. The objective of this study was to illustrate how the choice of parametric survival model impacts on estimates of uncertainty about extrapolated hazard functions and lifetime mean survival.
We examined seven commonly used parametric survival models and described analytical expressions and approximation methods (delta and multivariate normal) for estimating uncertainty. We illustrate the multivariate normal method using case studies based on four representative hypothetical datasets reflecting hazard functions commonly encountered in clinical practice (constant, increasing, decreasing, or unimodal), along with a hypothetical cost-effectiveness analysis.
Depending on the survival model chosen, the uncertainty in extrapolated hazard functions could be constant, increasing or decreasing over time for the case studies. Estimates of uncertainty in mean survival showed a large variation (up to sevenfold) for each case study. The magnitude of uncertainty in estimates of cost effectiveness, as measured using the incremental cost per quality-adjusted life-year gained, varied threefold across plausible models. Differences in estimates of uncertainty were observed even when models provided near-identical point estimates.
Survival model choice can have a significant impact on estimates of uncertainty of extrapolated hazard functions, mean survival and cost effectiveness, even when point estimates were similar. We provide good practice recommendations for analysts and decision makers, emphasizing the importance of considering the plausibility of estimates of uncertainty in the extrapolated period as a complementary part of the model selection process.
外推估计的风险函数可能是成本效益分析的一个重要组成部分。鉴于样本数据中的随访时间有限,可以预期,风险估计的不确定性随着外推时间的推移而增加。本研究的目的是说明选择参数生存模型如何影响对推断风险函数和终生平均生存的不确定性的估计。
我们检查了七种常用的参数生存模型,并描述了用于估计不确定性的分析表达式和近似方法(Delta 和多变量正态)。我们使用基于四个具有代表性的假设数据集的案例研究来说明多变量正态方法,这些数据集反映了在临床实践中常见的风险函数(常数、递增、递减或单峰),以及一个假设的成本效益分析。
根据选择的生存模型,案例研究中外推风险函数的不确定性可能随时间而保持不变、增加或减少。每个案例研究的平均生存不确定性估计值都有很大的差异(高达七倍)。使用增量成本每获得一个质量调整生命年来衡量的成本效益的不确定性估计值在合理的模型之间变化了三倍。即使模型提供了几乎相同的点估计值,也观察到了不确定性估计值的差异。
即使点估计值相似,生存模型的选择也会对推断风险函数、平均生存和成本效益的不确定性估计产生重大影响。我们为分析师和决策者提供了良好的实践建议,强调考虑外推期内不确定性估计的合理性作为模型选择过程的一个补充部分的重要性。