Suppr超能文献

代谢多样化的驱动因素:动态基因组邻域如何在十字花科中产生新的生物合成途径。

Drivers of metabolic diversification: how dynamic genomic neighbourhoods generate new biosynthetic pathways in the Brassicaceae.

机构信息

Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.

Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands.

出版信息

New Phytol. 2020 Aug;227(4):1109-1123. doi: 10.1111/nph.16338. Epub 2019 Dec 28.

Abstract

Plants produce an array of specialized metabolites with important ecological functions. The mechanisms underpinning the evolution of new biosynthetic pathways are not well-understood. Here, we exploit available genome sequence resources to investigate triterpene biosynthesis across the Brassicaceae. Oxidosqualene cyclases (OSCs) catalyze the first committed step in triterpene biosynthesis. Systematic analysis of 13 sequenced Brassicaceae genomes was performed to identify all OSC genes. The genome neighbourhoods (GNs) around a total of 163 OSC genes were investigated to identify Pfam domains significantly enriched in these regions. All-vs-all comparisons of OSC neighbourhoods and phylogenomic analysis were used to investigate the sequence similarity and evolutionary relationships of the numerous candidate triterpene biosynthetic gene clusters (BGCs) observed. Functional analysis of three representative BGCs was carried out and their triterpene pathway products were elucidated. Our results indicate that plant genomes are remarkably plastic, and that dynamic GNs generate new biosynthetic pathways in different Brassicaceae lineages by shuffling the genes encoding a core palette of triterpene-diversifying enzymes, presumably in response to strong environmental selection pressure. These results illuminate a genomic basis for diversification of plant-specialized metabolism through natural combinatorics of enzyme families, which can be mimicked using synthetic biology to engineer diverse bioactive molecules.

摘要

植物产生一系列具有重要生态功能的特化代谢物。支撑新生物合成途径进化的机制还不太清楚。在这里,我们利用现有的基因组序列资源来研究十字花科植物中的三萜生物合成。角鲨烯环化酶(OSC)催化三萜生物合成的第一步。对 13 个已测序的十字花科基因组进行了系统分析,以鉴定所有的 OSC 基因。总共 163 个 OSC 基因的基因组邻近区(GNs)被用来鉴定在这些区域中显著富集的 Pfam 结构域。通过全基因组对比和系统发育分析,研究了大量候选三萜生物合成基因簇(BGCs)的序列相似性和进化关系。对三个代表性 BGC 的功能分析,并阐明了它们的三萜途径产物。我们的结果表明,植物基因组具有很强的可塑性,通过核心三萜多样化酶的基因重排,动态的 GN 在不同的十字花科谱系中产生新的生物合成途径,这可能是对强烈的环境选择压力的反应。这些结果为通过酶家族的自然组合来阐明植物特化代谢物多样化的基因组基础提供了依据,这可以通过合成生物学来模拟,以设计多样化的生物活性分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9b9/7383575/fea564eec676/NPH-227-1109-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验