Suppr超能文献

机器学习算法在儿童重症手足口病风险预测中的应用。

Machine Learning Algorithms for Risk Prediction of Severe Hand-Foot-Mouth Disease in Children.

机构信息

Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China.

Graduate College, Southern Medical University, Guangzhou, Guangdong, P.R. China.

出版信息

Sci Rep. 2017 Jul 14;7(1):5368. doi: 10.1038/s41598-017-05505-8.

Abstract

The identification of indicators for severe HFMD is critical for early prevention and control of the disease. With this goal in mind, 185 severe and 345 mild HFMD cases were assessed. Patient demographics, clinical features, MRI findings, and laboratory test results were collected. Gradient boosting tree (GBT) was then used to determine the relative importance (RI) and interaction effects of the variables. Results indicated that elevated white blood cell (WBC) count > 15 × 10/L (RI: 4.47, p < 0.001) was the top predictor of severe HFMD, followed by spinal cord involvement (RI: 26.62, p < 0.001), spinal nerve roots involvement (RI: 10.34, p < 0.001), hyperglycemia (RI: 3.40, p < 0.001), and brain or spinal meninges involvement (RI: 2.45, p = 0.003). Interactions between elevated WBC count and hyperglycemia (H statistic: 0.231, 95% CI: 0-0.262, p = 0.031), between spinal cord involvement and duration of fever ≥3 days (H statistic: 0.291, 95% CI: 0.035-0.326, p = 0.035), and between brainstem involvement and body temperature (H statistic: 0.313, 95% CI: 0-0.273, p = 0.017) were observed. Therefore, GBT is capable to identify the predictors for severe HFMD and their interaction effects, outperforming conventional regression methods.

摘要

确定重型手足口病的指标对于疾病的早期预防和控制至关重要。为此,评估了 185 例重型和 345 例轻症手足口病病例。收集了患者的人口统计学、临床特征、MRI 结果和实验室检查结果。然后使用梯度提升树(GBT)来确定变量的相对重要性(RI)和交互作用。结果表明,白细胞计数升高(WBC)>15×10/L(RI:4.47,p<0.001)是重型手足口病的首要预测指标,其次是脊髓受累(RI:26.62,p<0.001)、脊神经根受累(RI:10.34,p<0.001)、高血糖(RI:3.40,p<0.001)和脑或脊髓脑膜受累(RI:2.45,p=0.003)。WBC 计数升高与高血糖之间存在交互作用(H 统计量:0.231,95%CI:0-0.262,p=0.031),脊髓受累与发热持续时间≥3 天之间存在交互作用(H 统计量:0.291,95%CI:0.035-0.326,p=0.035),脑干受累与体温之间存在交互作用(H 统计量:0.313,95%CI:0-0.273,p=0.017)。因此,GBT 能够识别重型手足口病的预测指标及其交互作用,优于传统回归方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验