Suppr超能文献

用于无菌过滤应用的中孔微狭缝氮化硅膜的开发。

Development of isoporous microslit silicon nitride membranes for sterile filtration applications.

机构信息

Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.

SiMPore Inc., West Henrietta, New York.

出版信息

Biotechnol Bioeng. 2020 Mar;117(3):879-885. doi: 10.1002/bit.27240. Epub 2019 Dec 18.

Abstract

The widely used 0.2/0.22 µm polymer sterile filters were developed for small molecule and protein sterile filtration but are not well-suited for the production of large nonprotein biological therapeutics, resulting in significant yield loss and production cost increases. Here, we report on the development of membranes with isoporous sub-0.2 μm rectangular prism pores using silicon micromachining to produce microslit silicon nitride (MSN) membranes. The very high porosity (~33%) and ultrathin (200 nm) nature of the 0.2 µm MSN membranes results in a dramatically different structure than the traditional 0.2/0.22 µm polymer sterile filter, which yielded comparable performance properties (including gas and hydraulic permeance, maximum differential pressure tolerance, nanoparticle sieving/fouling behavior). The results from bacteria retention tests, conducted according to the guidance of regulatory agencies, demonstrated that the 0.2 µm MSN membranes can be effectively used as sterile filters. It is anticipated that the results and technologies presented in this study will find future utility in the production of non-protein biological therapeutics and in other biological and biomedical applications.

摘要

广泛使用的 0.2/0.22 μm 聚合物无菌过滤器是为小分子和蛋白质的无菌过滤而开发的,但不适合生产大型非蛋白质生物治疗药物,这会导致产量显著损失和生产成本增加。在这里,我们报告了使用硅微加工开发具有等孔亚 0.2 μm 矩形棱柱孔的膜的情况,以生产微狭缝氮化硅(MSN)膜。0.2 μm MSN 膜的非常高的孔隙率(约 33%)和超薄(200 nm)性质导致其结构与传统的 0.2/0.22 μm 聚合物无菌过滤器有很大不同,而后者的性能(包括气体和液压渗透性、最大压差耐受能力、纳米颗粒筛分/堵塞行为)相当。根据监管机构的指导进行的细菌保留测试的结果表明,0.2 μm MSN 膜可有效用作无菌过滤器。预计本研究中呈现的结果和技术将在非蛋白质生物治疗药物的生产以及其他生物和生物医学应用中找到未来的用途。

相似文献

1
Development of isoporous microslit silicon nitride membranes for sterile filtration applications.
Biotechnol Bioeng. 2020 Mar;117(3):879-885. doi: 10.1002/bit.27240. Epub 2019 Dec 18.
2
Prefiltration enhances performance of sterile filtration for glycoconjugate vaccines.
Biotechnol Prog. 2021 Sep;37(5):e3180. doi: 10.1002/btpr.3180. Epub 2021 Jun 16.
3
Fouling Behavior during Sterile Filtration of Different Glycoconjugate Serotypes Used in Conjugate Vaccines.
Pharm Res. 2021 Jan;38(1):155-163. doi: 10.1007/s11095-020-02983-w. Epub 2021 Jan 12.
4
Versatile ultrathin nanoporous silicon nitride membranes.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21039-44. doi: 10.1073/pnas.0911450106. Epub 2009 Nov 30.
5
Basics of sterile compounding: bubble point testing.
Int J Pharm Compd. 2014 Jan-Feb;18(1):54-7.
6
Fabrication of nanopores in a 100-nm thick Si3N4 membrane.
J Nanosci Nanotechnol. 2006 Jul;6(7):2175-81. doi: 10.1166/jnn.2006.366.
7
Nanoporous SiC: a candidate semi-permeable material for biomedical applications.
Biomed Microdevices. 2004 Dec;6(4):261-7. doi: 10.1023/B:BMMD.0000048558.91401.1d.
8
Data Mining to Determine the Influence of Fluid Properties on the Integrity Test Values.
PDA J Pharm Sci Technol. 2020 Sep-Oct;74(5):524-562. doi: 10.5731/pdajpst.2019.011387. Epub 2020 May 28.
9

引用本文的文献

1
Oxygen transport in nanoporous SiN membrane compared to PDMS and polypropylene for microfluidic ECMO.
Biomed Microdevices. 2025 May 28;27(2):22. doi: 10.1007/s10544-025-00750-5.
2
Oxygen Transport in Nanoporous SiN Membrane Compared to PDMS and Polypropylene for Microfluidic ECMO.
bioRxiv. 2025 Jan 5:2025.01.04.631337. doi: 10.1101/2025.01.04.631337.
3
Float-Cast Microsieves with Elliptical Pores.
Langmuir. 2024 Oct 29;40(43):22516-22525. doi: 10.1021/acs.langmuir.4c01232. Epub 2024 Oct 21.
5
Comparative evaluation of filtration and imaging properties of analytical filters for microplastic capture and analysis.
Chemosphere. 2023 Aug;332:138811. doi: 10.1016/j.chemosphere.2023.138811. Epub 2023 Apr 29.

本文引用的文献

2
Microscopic Characterization of Brevundimonas diminuta in the Hydrated State.
PDA J Pharm Sci Technol. 2015 May-Jun;69(3):355-65. doi: 10.5731/pdajpst.2015.01045.
3
Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates.
Nanoscale. 2014 Sep 21;6(18):10798-805. doi: 10.1039/c4nr03070b. Epub 2014 Aug 8.
4
Downstream processing of lentiviral vectors: releasing bottlenecks.
Hum Gene Ther Methods. 2012 Aug;23(4):255-63. doi: 10.1089/hgtb.2012.059. Epub 2012 Aug 30.
5
Production of CGMP-Grade Lentiviral Vectors.
Bioprocess Int. 2012 Feb;10(2):32-43.
6
Permeability - Selectivity Analysis for Ultrafiltration: Effect of Pore Geometry.
J Memb Sci. 2010 Mar 1;349(1-2):405. doi: 10.1016/j.memsci.2009.12.003.
7
High-Performance Silicon Nanopore Hemofiltration Membranes.
J Memb Sci. 2009 Jan 5;326(1):58-63. doi: 10.1016/j.memsci.2008.09.039.
8
Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters.
Environ Sci Technol. 2008 Sep 1;42(17):6749-54. doi: 10.1021/es800720n.
9
Production and characterization of clinical grade exosomes derived from dendritic cells.
J Immunol Methods. 2002 Dec 15;270(2):211-26. doi: 10.1016/s0022-1759(02)00330-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验