MRC Centre for Environment & Health, King's College London, UK.
MRC Centre for Environment & Health, King's College London, UK; NIHR Health Impact of Environmental Hazards HPRU, King's College London, UK.
Environ Int. 2020 Jan;134:105188. doi: 10.1016/j.envint.2019.105188. Epub 2019 Nov 28.
Despite the London Underground (LU) handling on average 2.8 million passenger journeys per day, the characteristics and potential health effects of the elevated concentrations of metal-rich PM found in this subway system are not well understood.
Spatial monitoring campaigns were carried out to characterise the health-relevant chemical and physical properties of PM across the LU network, including diurnal and day-to-day variability and spatial distribution (above ground, depth below ground and subway line). Population-weighted station PM rankings were produced to understand the relative importance of concentrations at different stations and on different lines.
The PM mass in the LU (mean 88 μg m, median 28 μg m) was greater than at ambient background locations (mean 19 μg m, median 14 μg m) and roadside environments in central London (mean 22 μg m, median 14 μg m). Concentrations varied between lines and locations, with the deepest and shallowest submerged lines being the District (median 4 μg m) and Victoria (median 361 μg m but up to 885 μg m). Broadly in agreement with other subway systems around the world, sampled LU PM comprised 47% iron oxide, 7% elemental carbon, 11% organic carbon, and 14% metallic and mineral oxides. Although a relationship between line depth and air quality inside the tube trains was evident, there were clear influences relating to the distance from cleaner outside air and the exchange with cabin air when the doors open. The passenger population-weighted exposure analysis demonstrated a method to identify stations that should be prioritised for remediation to improve air quality.
PM concentrations in the LU are many times higher than in other London transport Environments. Failure to include this environment in epidemiological studies of the relationship between PM and health in London is therefore likely to lead to a large exposure misclassification error. Given the significant contribution of underground PM to daily exposure, and the differences in composition compared to urban PM, there is a clear need for well-designed studies to better understand the health effects of underground exposure.
尽管伦敦地铁(LU)平均每天承载 280 万乘客,但人们对其地铁系统中发现的富含金属的细颗粒物浓度较高的特征及其潜在健康影响还了解甚少。
进行了空间监测活动,以描述 LU 网络中 PM 的健康相关化学和物理特性,包括昼夜变化和日变化以及空间分布(地面以上、地下深度和地铁线路)。制作了基于人口加权的车站 PM 排名,以了解不同车站和不同线路上浓度的相对重要性。
LU 中的 PM 质量(平均值为 88μg/m,中位数为 28μg/m)高于伦敦市中心的背景环境位置(平均值 19μg/m,中位数 14μg/m)和路边环境(平均值 22μg/m,中位数 14μg/m)。浓度在不同线路和位置之间存在差异,最深和最浅的淹没线路是 District(中位数 4μg/m)和 Victoria(中位数 361μg/m,但最高可达 885μg/m)。与世界上其他地铁系统大致一致,所采样的 LU PM 包括 47%的氧化铁、7%的元素碳、11%的有机碳、14%的金属和矿物氧化物。尽管列车内空气质量与线路深度之间存在关系,但当车门打开时,与外部清洁空气的距离以及与舱内空气的交换明显存在影响。基于乘客的权重暴露分析,展示了一种识别应优先进行补救以改善空气质量的车站的方法。
LU 中的 PM 浓度比伦敦其他交通环境中的浓度高很多倍。如果在伦敦的 PM 与健康关系的流行病学研究中不包括这一环境,那么很可能导致暴露分类错误。鉴于地下 PM 对日常暴露的巨大贡献,以及与城市 PM 相比组成上的差异,因此显然需要进行精心设计的研究,以更好地了解地下暴露的健康影响。