Suppr超能文献

CATHER:一种具有预测接触的新型穿线算法。

CATHER: a novel threading algorithm with predicted contacts.

机构信息

School of Mathematical Sciences, Nankai University, Tianjin 300071, China.

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China.

出版信息

Bioinformatics. 2020 Apr 1;36(7):2119-2125. doi: 10.1093/bioinformatics/btz876.

Abstract

MOTIVATION

Threading is one of the most effective methods for protein structure prediction. In recent years, the increasing accuracy in protein contact map prediction opens a new avenue to improve the performance of threading algorithms. Several preliminary studies suggest that with predicted contacts, the performance of threading algorithms can be improved greatly. There is still much room to explore to make better use of predicted contacts.

RESULTS

We have developed a new contact-assisted threading algorithm named CATHER using both conventional sequential profiles and contact map predicted by a deep learning-based algorithm. Benchmark tests on an independent test set and the CASP12 targets demonstrated that CATHER made significant improvement over other methods which only use either sequential profile or predicted contact map. Our method was ranked at the Top 10 among all 39 participated server groups on the 32 free modeling targets in the blind tests of the CASP13 experiment. These data suggest that it is promising to push forward the threading algorithms by using predicted contacts.

AVAILABILITY AND IMPLEMENTATION

http://yanglab.nankai.edu.cn/CATHER/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

序列比对是蛋白质结构预测最有效的方法之一。近年来,蛋白质接触图预测精度的提高为改进序列比对算法的性能开辟了新途径。一些初步研究表明,利用预测的接触信息,可以大大提高序列比对算法的性能。还有很大的探索空间可以更好地利用预测的接触信息。

结果

我们开发了一种新的基于接触的序列比对算法 CATHER,它同时使用传统的序列比对和基于深度学习算法预测的接触图。在独立测试集和 CASP12 目标上的基准测试表明,CATHER 显著优于仅使用序列比对或预测接触图的其他方法。在 CASP13 实验的盲测中,针对 32 个自由建模目标,我们的方法在所有 39 个参赛服务器组中排名前 10 位。这些数据表明,利用预测的接触信息来推动序列比对算法的发展是有前途的。

可用性和实现

http://yanglab.nankai.edu.cn/CATHER/。

补充信息

补充数据可在 Bioinformatics 在线获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验