Suppr超能文献

植物对非生物胁迫的抗性

Plant Resistance to Abiotic Stresses.

作者信息

Costa Maria-Cecilia D, Farrant Jill M

机构信息

Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany.

Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa.

出版信息

Plants (Basel). 2019 Nov 28;8(12):553. doi: 10.3390/plants8120553.

Abstract

Extreme weather events are one of the biggest dangers posed by climate breakdown. As the temperatures increase, droughts and desertification will render whole regions inhospitable to agriculture. At the same time, other regions might suffer significant crop losses due to floods. Usually, regional food shortages can be covered by surpluses from elsewhere on the planet. However, the climate breakdown could trigger sustained food supply disruptions globally. Therefore, it is necessary to develop more stress-resilient crop alternatives by both breeding new varieties and promoting underutilized crop species (orphan crops). The articles in this special issue cover responses of staple crops and orphan crops to abiotic stresses relevant under the climate breakdown, such as heat, water, high salinity, nitrogen, and heavy metal stresses. This information will certainly complement a toolkit that can help inform, support, and influence the design of measures to deal with the climate crisis.

摘要

极端天气事件是气候崩溃带来的最大危险之一。随着气温上升,干旱和荒漠化将使整个地区不适宜农业生产。与此同时,其他地区可能会因洪水而遭受重大农作物损失。通常情况下,区域粮食短缺可以通过地球上其他地方的盈余来弥补。然而,气候崩溃可能引发全球范围内持续的粮食供应中断。因此,有必要通过培育新品种和推广未充分利用的作物品种(小众作物)来开发更具抗逆性的作物替代品。本期特刊中的文章涵盖了主要作物和小众作物对气候崩溃相关非生物胁迫(如高温、水分、高盐度、氮和重金属胁迫)的响应。这些信息必将补充一个工具包,有助于为应对气候危机的措施设计提供信息、支持并产生影响。

相似文献

1
Plant Resistance to Abiotic Stresses.
Plants (Basel). 2019 Nov 28;8(12):553. doi: 10.3390/plants8120553.
2
QTLian breeding for climate resilience in cereals: progress and prospects.
Funct Integr Genomics. 2019 Sep;19(5):685-701. doi: 10.1007/s10142-019-00684-1. Epub 2019 May 16.
3
Surviving a Double-Edged Sword: Response of Horticultural Crops to Multiple Abiotic Stressors.
Int J Mol Sci. 2024 May 10;25(10):5199. doi: 10.3390/ijms25105199.
4
Climate Change-The Rise of Climate-Resilient Crops.
Plants (Basel). 2024 Feb 8;13(4):490. doi: 10.3390/plants13040490.
5
Enhancement of Plant Productivity in the Post-Genomics Era.
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
6
Crop Production under Drought and Heat Stress: Plant Responses and Management Options.
Front Plant Sci. 2017 Jun 29;8:1147. doi: 10.3389/fpls.2017.01147. eCollection 2017.
7
Increase Crop Resilience to Heat Stress Using Omic Strategies.
Front Plant Sci. 2022 May 17;13:891861. doi: 10.3389/fpls.2022.891861. eCollection 2022.
10
Diversifying crops for food and nutrition security - a case of teff.
Biol Rev Camb Philos Soc. 2017 Feb;92(1):188-198. doi: 10.1111/brv.12225. Epub 2015 Oct 12.

引用本文的文献

4
Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development.
Front Plant Sci. 2023 Jan 4;13:1052569. doi: 10.3389/fpls.2022.1052569. eCollection 2022.
6
Endophytic Fungal Consortia Enhance Basal Drought-Tolerance in by Upregulating the Antioxidant Enzyme through .
Antioxidants (Basel). 2022 Aug 27;11(9):1669. doi: 10.3390/antiox11091669.
7
Utilizing spectral vegetation indices for yield assessment of tomato genotypes grown in arid conditions.
Saudi J Biol Sci. 2022 Apr;29(4):2506-2513. doi: 10.1016/j.sjbs.2021.12.030. Epub 2021 Dec 16.
8
QTL Mapping and Identification of Candidate Genes for Heat Tolerance at the Flowering Stage in Rice.
Front Genet. 2021 Jan 22;11:621871. doi: 10.3389/fgene.2020.621871. eCollection 2020.
9
C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants.
Front Plant Sci. 2020 Feb 20;11:115. doi: 10.3389/fpls.2020.00115. eCollection 2020.

本文引用的文献

1
Genetic strategies for improving crop yields.
Nature. 2019 Nov;575(7781):109-118. doi: 10.1038/s41586-019-1679-0. Epub 2019 Nov 6.
4
Different Roles of Heat Shock Proteins (70 kDa) During Abiotic Stresses in Barley () Genotypes.
Plants (Basel). 2019 Jul 26;8(8):248. doi: 10.3390/plants8080248.
5
Orphan crops: their importance and the urgency of improvement.
Planta. 2019 Sep;250(3):677-694. doi: 10.1007/s00425-019-03210-6. Epub 2019 Jun 12.
6
Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States.
Glob Chang Biol. 2019 Jul;25(7):2325-2337. doi: 10.1111/gcb.14628. Epub 2019 Apr 29.
7
Morphological and Transcriptome Analysis of Wheat Seedlings Response to Low Nitrogen Stress.
Plants (Basel). 2019 Apr 15;8(4):98. doi: 10.3390/plants8040098.
8
Towards an Understanding of the Molecular Basis of Nickel Hyperaccumulation in Plants.
Plants (Basel). 2019 Jan 4;8(1):11. doi: 10.3390/plants8010011.
9
Quinoa Abiotic Stress Responses: A Review.
Plants (Basel). 2018 Nov 29;7(4):106. doi: 10.3390/plants7040106.
10
Effect of Selenium on the Responses Induced by Heat Stress in Plant Cell Cultures.
Plants (Basel). 2018 Aug 11;7(3):64. doi: 10.3390/plants7030064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验