Suppr超能文献

基于机器学习算法的二次散斑跟踪和图像处理的角膜厚度测量。

Corneal thickness measurement by secondary speckle tracking and image processing using machine-learning algorithms.

机构信息

Bar-Ilan University, Faculty of Engineering, Nanotechnology Center, Ramat-Gan, Israel.

Bar-Ilan University, School of Optometry and Vision Science, Ramat-Gan, Israel.

出版信息

J Biomed Opt. 2019 Dec;24(12):1-10. doi: 10.1117/1.JBO.24.12.126001.

Abstract

Corneal thickness (CoT) is an important tool in the evaluation process for several disorders and in the assessment of intraocular pressure. We present a method enabling high-precision measurement of CoT based on secondary speckle tracking and processing of the information by machine-learning (ML) algorithms. The proposed configuration includes capturing by fast camera the laser beam speckle patterns backscattered from the corneal-scleral border, followed by ML processing of the image. The technique was tested on a series of phantoms having different thicknesses as well as in clinical trials on human eyes. The results show high accuracy in determination of eye CoT, and implementation is speedy in comparison with other known measurement methods.

摘要

角膜厚度(CoT)是评估多种疾病和眼内压的重要工具。我们提出了一种基于二次散斑跟踪和机器学习(ML)算法对信息进行处理的高精度 CoT 测量方法。该方法包括使用高速相机捕捉从角膜巩膜边界反向散射的激光束散斑图案,然后对图像进行 ML 处理。该技术已在具有不同厚度的一系列体模以及在人眼临床试验中进行了测试。结果表明,该方法在确定眼 CoT 方面具有很高的准确性,与其他已知的测量方法相比,其实现速度更快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验