Suppr超能文献

对蟹的两个神经节中已知身份的单个神经元进行分子分析。

Molecular profiling of single neurons of known identity in two ganglia from the crab .

作者信息

Northcutt Adam J, Kick Daniel R, Otopalik Adriane G, Goetz Benjamin M, Harris Rayna M, Santin Joseph M, Hofmann Hans A, Marder Eve, Schulz David J

机构信息

Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211.

Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, MA 02543.

出版信息

Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26980-26990. doi: 10.1073/pnas.1911413116. Epub 2019 Dec 5.

Abstract

Understanding circuit organization depends on identification of cell types. Recent advances in transcriptional profiling methods have enabled classification of cell types by their gene expression. While exceptionally powerful and high throughput, the ground-truth validation of these methods is difficult: If cell type is unknown, how does one assess whether a given analysis accurately captures neuronal identity? To shed light on the capabilities and limitations of solely using transcriptional profiling for cell-type classification, we performed 2 forms of transcriptional profiling-RNA-seq and quantitative RT-PCR, in single, unambiguously identified neurons from 2 small crustacean neuronal networks: The stomatogastric and cardiac ganglia. We then combined our knowledge of cell type with unbiased clustering analyses and supervised machine learning to determine how accurately functionally defined neuron types can be classified by expression profile alone. The results demonstrate that expression profile is able to capture neuronal identity most accurately when combined with multimodal information that allows for post hoc grouping, so analysis can proceed from a supervised perspective. Solely unsupervised clustering can lead to misidentification and an inability to distinguish between 2 or more cell types. Therefore, this study supports the general utility of cell identification by transcriptional profiling, but adds a caution: It is difficult or impossible to know under what conditions transcriptional profiling alone is capable of assigning cell identity. Only by combining multiple modalities of information such as physiology, morphology, or innervation target can neuronal identity be unambiguously determined.

摘要

理解神经回路组织依赖于细胞类型的识别。转录谱分析方法的最新进展使得能够根据基因表达对细胞类型进行分类。虽然这些方法极其强大且高通量,但对其进行事实依据验证却很困难:如果细胞类型未知,那么如何评估给定的分析是否准确捕捉到神经元身份呢?为了阐明仅使用转录谱分析进行细胞类型分类的能力和局限性,我们对来自两种小型甲壳类动物神经回路——口胃神经节和心脏神经节中单个明确识别的神经元进行了两种形式的转录谱分析,即RNA测序和定量逆转录聚合酶链反应。然后,我们将细胞类型知识与无偏聚类分析及监督式机器学习相结合,以确定仅通过表达谱就能多准确地对功能定义的神经元类型进行分类。结果表明,当与允许事后分组的多模态信息相结合时,表达谱能够最准确地捕捉神经元身份,这样分析就可以从监督的角度进行。仅无监督聚类可能导致错误识别,并且无法区分两种或更多种细胞类型。因此,本研究支持通过转录谱分析进行细胞识别的普遍实用性,但也提出了一个警示:很难或不可能知道在何种条件下仅转录谱分析就能确定细胞身份。只有通过结合多种信息模式,如生理学、形态学或神经支配靶点,才能明确确定神经元身份。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc0f/6936480/0854355acbe6/pnas.1911413116fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验