Suppr超能文献

基于 3D 生物打印 GelMA 的滋养层细胞侵袭研究模型。

3D Bioprinted GelMA Based Models for the Study of Trophoblast Cell Invasion.

机构信息

Stevens Institute of Technology, Department of Mechanical Engineering, Hoboken, NJ, 07030, USA.

Hackensack University Medical Center, Department of Obstetrics and Gynecology, Hackensack, NJ, 07601, USA.

出版信息

Sci Rep. 2019 Dec 11;9(1):18854. doi: 10.1038/s41598-019-55052-7.

Abstract

Bioprinting is an emerging and promising technique for fabricating 3D cell-laden constructs for various biomedical applications. In this paper, we employed 3D bioprinted GelMA-based models to investigate the trophoblast cell invasion phenomenon, enabling studies of key placental functions. Initially, a set of optimized material and process parameters including GelMA concentration, UV crosslinking time and printing configuration were identified by systematic, parametric study. Following this, a multiple-ring model (2D multi-ring model) was tested with the HTR-8/SVneo trophoblast cell line to measure cell movement under the influence of EGF (chemoattractant) gradients. In the multi-ring model, the cell front used as a cell invasion indicator moves at a rate of 85 ± 33 µm/day with an EGF gradient of 16 µM. However, the rate was dramatically reduced to 13 ± 5 µm/day, when the multi-ring model was covered with a GelMA layer to constrain cells within the 3D environment (3D multi-ring model). Due to the geometric and the functional limitations of multi-ring model, a multi-strip model (2D multi-strip model) was developed to investigate cell movement in the presence and absence of the EGF chemoattractant. The results show that in the absence of an overlying cell-free layer of GelMA, movement of the cell front shows no significant differences between control and EGF-stimulated rates, due to the combination of migration and proliferation at high cell density (6 × 10 cells/ml) near the GelMA surface. When the model was covered by a layer of GelMA (3D multi-strip model) and migration was excluded, EGF-stimulated cells showed an invasion rate of 21 ± 3 µm/day compared to the rate for unstimulated cells, of 5 ± 4 µm/day. The novel features described in this report advance the use of the 3D bioprinted placental model as a practical tool for not only measurement of trophoblast invasion but also the interaction of invading cells with other tissue elements.

摘要

生物打印是一种新兴且有前途的技术,可用于制造用于各种生物医学应用的 3D 细胞载体构建体。在本文中,我们使用基于 GelMA 的 3D 生物打印模型来研究滋养层细胞侵袭现象,从而研究胎盘的关键功能。最初,通过系统的参数研究确定了一组优化的材料和工艺参数,包括 GelMA 浓度、UV 交联时间和打印配置。在此之后,我们使用 HTR-8/SVneo 滋养层细胞系测试了多环模型(2D 多环模型),以测量在 EGF(趋化因子)梯度影响下细胞的运动。在多环模型中,用作细胞侵袭指标的细胞前沿以 85 ± 33 μm/天的速度移动,具有 16 μM 的 EGF 梯度。然而,当 GelMA 层覆盖多环模型以将细胞限制在 3D 环境中(3D 多环模型)时,速度急剧降低至 13 ± 5 μm/天。由于多环模型的几何和功能限制,开发了多条带模型(2D 多条带模型)来研究在存在和不存在 EGF 趋化因子的情况下细胞的运动。结果表明,在不存在无细胞的 GelMA 上层的情况下,由于在靠近 GelMA 表面的高细胞密度(6×10 个细胞/ml)下迁移和增殖的结合,细胞前沿的运动在对照和 EGF 刺激的速率之间没有显着差异。当模型被 GelMA 层覆盖(3D 多带模型)且迁移被排除时,与未刺激的细胞相比,EGF 刺激的细胞显示出 21 ± 3 μm/天的侵袭速率,而未刺激的细胞的侵袭速率为 5 ± 4 μm/天。本报告中描述的新特征推进了 3D 生物打印胎盘模型的使用,不仅作为测量滋养层细胞侵袭的实用工具,而且作为侵袭细胞与其他组织元素相互作用的实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab8/6906490/c8aa2950490e/41598_2019_55052_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验