Jokel Martina, Nagy Valéria, Tóth Szilvia Z, Kosourov Sergey, Allahverdiyeva Yagut
1Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland.
2Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726 Hungary.
Biotechnol Biofuels. 2019 Dec 5;12:280. doi: 10.1186/s13068-019-1618-1. eCollection 2019.
The development of renewable and sustainable biofuels to cover the future energy demand is one of the most challenging issues of our time. Biohydrogen, produced by photosynthetic microorganisms, has the potential to become a green biofuel and energy carrier for the future sustainable world, since it provides energy without CO emission. The recent development of two alternative protocols to induce hydrogen photoproduction in green algae enables the function of the O-sensitive [FeFe]-hydrogenases, located at the acceptor side of photosystem I, to produce H for several days. These protocols prevent carbon fixation and redirect electrons toward H production. In the present work, we employed these protocols to a knockout mutant lacking flavodiiron proteins (FDPs), thus removing another possible electron competitor with H production.
The deletion of the FDP electron sink resulted in the enhancement of H photoproduction relative to wild-type . Additionally, the lack of FDPs leads to a more effective obstruction of carbon fixation even under elongated light pulses.
We demonstrated that the rather simple adjustment of cultivation conditions together with genetic manipulation of alternative electron pathways of photosynthesis results in efficient re-routing of electrons toward H photoproduction. Furthermore, the introduction of a short recovery phase by regular switching from H photoproduction to biomass accumulation phase allows to maintain cell fitness and use photosynthetic cells as long-term H-producing biocatalysts.
开发可再生且可持续的生物燃料以满足未来能源需求是我们这个时代最具挑战性的问题之一。由光合微生物产生的生物氢有潜力成为未来可持续世界的绿色生物燃料和能量载体,因为它在产生能量时不排放二氧化碳。最近开发的两种在绿藻中诱导光产氢的替代方案,使得位于光系统I受体侧的对氧敏感的[FeFe]-氢化酶能够发挥功能,持续数天产生氢气。这些方案阻止了碳固定,并将电子重定向至氢气产生过程。在本研究中,我们将这些方案应用于一个缺乏黄素二铁蛋白(FDPs)的基因敲除突变体,从而去除了另一个可能与氢气产生竞争电子的因素。
FDP电子汇的缺失导致相对于野生型光产氢增加。此外,即使在延长的光脉冲条件下,FDPs的缺失也导致对碳固定更有效的阻碍。
我们证明,通过简单调整培养条件以及对光合作用的替代电子途径进行基因操作,能够有效地将电子重定向至光产氢过程。此外,通过定期从光产氢切换到生物量积累阶段引入短暂的恢复阶段,可以维持细胞健康状态,并将光合细胞用作长期产氢生物催化剂。