Department of Physics, University of California, Berkeley, CA 94720, USA.
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Science. 2019 Dec 13;366(6471):1349-1354. doi: 10.1126/science.aaw4352.
Pressure alters the physical, chemical, and electronic properties of matter. The diamond anvil cell enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena. Here, we introduce and use a nanoscale sensing platform that integrates nitrogen-vacancy (NV) color centers directly into the culet of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging of both stress fields and magnetism as a function of pressure and temperature. We quantify all normal and shear stress components and demonstrate vector magnetic field imaging, enabling measurement of the pressure-driven [Formula: see text] phase transition in iron and the complex pressure-temperature phase diagram of gadolinium. A complementary NV-sensing modality using noise spectroscopy enables the characterization of phase transitions even in the absence of static magnetic signatures.
压力会改变物质的物理、化学和电子特性。金刚石压腔使台式实验能够研究高压现象的多样化景观。在这里,我们引入并使用了一种纳米级传感平台,该平台将氮空位(NV)色心直接集成到金刚石压砧的尖端。我们通过在压力和温度的函数下执行衍射限制的应力场和磁性成像,展示了该平台的多功能性。我们量化了所有的正应力和切应力分量,并展示了矢量磁场成像,从而能够测量铁中的[公式:见文本]相变和钆的复杂压力-温度相图。使用噪声光谱学的互补 NV 传感模式甚至可以在没有静态磁场特征的情况下对相变进行表征。