Dept of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Arcavacata di Rende (CS), Italy.
Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende (CS), Italy.
Sci Rep. 2019 Dec 12;9(1):18953. doi: 10.1038/s41598-019-55497-w.
The exceptional hypoxia tolerance of the goldfish heart may be achieved through the activation of an alternative mechanism recruiting the first product of the anaerobic glycolysis (i.e. piruvate). This hypothesis led to design a classical mass spectrometry based proteomic study to identify in the goldfish cardiac proteins that may be associated with maintaining heart function under normoxia and hypoxia. A selective protein solubilization, SDS PAGE, trypsin digestion and MALDI MS/MS analysis allowed the identification of the 12 most stable hypoxia-regulated proteins. Among these proteins, five are enzymes catalyzing reversible steps of the glycolysis/gluconeogenesis network. Protein composition reveals the presence of fructose-1,6-bisphosphate aldolase B as a specific hypoxia-regulated protein. This work indicated that the key enzyme of reversible steps of the glycolysis/gluconeogenesis network is fructose-1,6-bisphosphate, aldolase B, suggesting a role of gluconeogenesis in the mechanisms involved in the goldfish heart response to hypoxia.
金鱼心脏的非凡耐缺氧能力可能是通过激活一种替代机制实现的,这种机制招募了无氧糖酵解的第一个产物(即丙酮酸)。这一假说促使我们设计了一项基于经典质谱的蛋白质组学研究,以鉴定在金鱼心脏中可能与维持正常氧和缺氧下心脏功能有关的蛋白质。一种选择性的蛋白质溶解、SDS-PAGE、胰蛋白酶消化和 MALDI-MS/MS 分析允许鉴定出 12 种最稳定的缺氧调节蛋白。在这些蛋白质中,有 5 种酶催化糖酵解/糖异生网络的可逆步骤。蛋白质组成表明果糖-1,6-二磷酸醛缩酶 B 作为一种特定的缺氧调节蛋白存在。这项工作表明,糖酵解/糖异生网络的可逆步骤的关键酶是果糖-1,6-二磷酸醛缩酶 B,这表明糖异生在参与金鱼心脏对缺氧反应的机制中起作用。