Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Nature. 2020 Jan;577(7790):410-415. doi: 10.1038/s41586-019-1865-0. Epub 2019 Dec 25.
The metabolic pathways encoded by the human gut microbiome constantly interact with host gene products through numerous bioactive molecules. Primary bile acids (BAs) are synthesized within hepatocytes and released into the duodenum to facilitate absorption of lipids or fat-soluble vitamins. Some BAs (approximately 5%) escape into the colon, where gut commensal bacteria convert them into various intestinal BAs that are important hormones that regulate host cholesterol metabolism and energy balance via several nuclear receptors and/or G-protein-coupled receptors. These receptors have pivotal roles in shaping host innate immune responses. However, the effect of this host-microorganism biliary network on the adaptive immune system remains poorly characterized. Here we report that both dietary and microbial factors influence the composition of the gut BA pool and modulate an important population of colonic FOXP3 regulatory T (T) cells expressing the transcription factor RORγ. Genetic abolition of BA metabolic pathways in individual gut symbionts significantly decreases this T cell population. Restoration of the intestinal BA pool increases colonic RORγT cell counts and ameliorates host susceptibility to inflammatory colitis via BA nuclear receptors. Thus, a pan-genomic biliary network interaction between hosts and their bacterial symbionts can control host immunological homeostasis via the resulting metabolites.
人类肠道微生物组所编码的代谢途径通过众多生物活性分子不断与宿主基因产物相互作用。初级胆汁酸(BAs)在肝细胞内合成,并被释放到十二指肠中,以促进脂质或脂溶性维生素的吸收。一些 BAs(约 5%)会逃入结肠,那里的肠道共生细菌将它们转化为各种肠道 BAs,这些 BAs 是通过几种核受体和/或 G 蛋白偶联受体调节宿主胆固醇代谢和能量平衡的重要激素。这些受体在塑造宿主先天免疫反应方面发挥着关键作用。然而,这种宿主-微生物胆汁网络对适应性免疫系统的影响仍知之甚少。在这里,我们报告称,饮食和微生物因素都会影响肠道 BA 池的组成,并调节表达转录因子 RORγ 的结肠 FOXP3 调节性 T(T)细胞的一个重要群体。个体肠道共生菌中 BA 代谢途径的遗传缺失会显著减少这种 T 细胞群体。肠道 BA 池的恢复会增加结肠 RORγT 细胞计数,并通过 BA 核受体改善宿主对炎症性结肠炎的易感性。因此,宿主与其细菌共生菌之间的全基因组胆汁网络相互作用可以通过产生的代谢物来控制宿主的免疫稳态。