Department of Chemistry and Biochemistry , The University of Texas at Dallas , 800 W. Campbell Road , Richardson , Texas 75080 , United States.
Nano Lett. 2020 Feb 12;20(2):1378-1382. doi: 10.1021/acs.nanolett.9b04911. Epub 2020 Jan 6.
Fundamental understandings and precise control of nanoparticle growth in the complex biological environment are crucial to broadening their potential applications in tissue imaging. Herein, we report that glutathione (GSH), a widely used capping ligand for precise control of the size of gold nanoparticle (AuNP) down to single-atom level in test tubes, can also be used to direct the selective growth of the AuNPs in the mitochondria of renal tubule cells as well as hippocampus cells in the tissues. Precise control of this growth process can lead to the formation of both ultrasmall AuNPs with near-infrared luminescence and large plasmonic AuNPs. The observed selective growth of the AuNPs is likely due to unique GSH storage function of the mitochondria. Using a different ligand, β-glucose thiol, we also found that the brush border of the intestine for glucose absorption became the major site for the growth of luminescent AuNPs. These findings suggest that selective growth of AuNPs in the biological tissues can indeed be directed with specific ligands, opening up a new avenue to tissue labeling and future development of artificial bionano hybrid systems.
在复杂的生物环境中,对纳米颗粒生长的基本理解和精确控制对于拓宽其在组织成像中的潜在应用至关重要。本文报道了一种广泛使用的巯基化合物谷胱甘肽(GSH),它不仅可以在试管中精确控制金纳米颗粒(AuNP)的尺寸缩小到单原子水平,还可以引导 AuNP 在肾小管细胞和组织中海马细胞的线粒体中选择性生长。对这个生长过程的精确控制可以导致近红外发光的超小 AuNP 和大等离子 AuNP 的形成。观察到的 AuNP 的选择性生长可能归因于线粒体独特的 GSH 储存功能。使用不同的配体β-葡萄糖硫醇,我们还发现肠道的刷状缘(用于葡萄糖吸收)成为发光 AuNP 生长的主要部位。这些发现表明,确实可以使用特定的配体来指导生物组织中 AuNP 的选择性生长,为组织标记和未来人工仿生混合系统的发展开辟了新途径。