Suppr超能文献

半自动与基于深度学习的自动方法在活体肝移植供体肝脏分割中的比较。

Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors.

机构信息

Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, Turkey.

Department of Radiology, Dokuz Eylül University School of Medicine, İzmir, Turkey.

出版信息

Diagn Interv Radiol. 2020 Jan;26(1):11-21. doi: 10.5152/dir.2019.19025.

Abstract

PURPOSE

To compare the accuracy and repeatability of emerging machine learning based (i.e. deep) automatic segmentation algorithms with those of well-established semi-automatic (interactive) methods for determining liver volume in living liver transplant donors at computerized tomography (CT) imaging.

METHODS

A total of 12 (6 semi-, 6 full-automatic) methods are evaluated. The semi-automatic segmentation algorithms are based on both traditional iterative models including watershed, fast marching, region growing, active contours and modern techniques including robust statistical segmenter and super-pixels. These methods entail some sort of interaction mechanism such as placing initialization seeds on images or determining a parameter range. The automatic methods are based on deep learning and they include three framework templates (DeepMedic, NiftyNet and U-Net) the first two of which are applied with default parameter sets and the last two involve adapted novel model designs. For 20 living donors (6 training and 12 test datasets), a group of imaging scientists and radiologists created ground truths by performing manual segmentations on contrast material-enhanced CT images. Each segmentation is evaluated using five metrics (i.e. volume overlap and relative volume errors, average/RMS/maximum symmetrical surface distances). The results are mapped to a scoring system and a final grade is calculated by taking their average. Accuracy and repeatability were evaluated using slice by slice comparisons and volumetric analysis. Diversity and complementarity are observed through heatmaps. Majority voting and Simultaneous Truth and Performance Level Estimation (STAPLE) algorithms are utilized to obtain the fusion of the individual results.

RESULTS

The top four methods are determined to be automatic deep models having 79.63, 79.46 and 77.15 and 74.50 scores. Intra-user score is determined as 95.14. Overall, deep automatic segmentation outperformed interactive techniques on all metrics. The mean volume of liver of ground truth is found to be 1409.93 mL ± 271.28 mL, while it is calculated as 1342.21 mL ± 231.24 mL using automatic and 1201.26 mL ± 258.13 mL using interactive methods, showing higher accuracy and less variation on behalf of automatic methods. The qualitative analysis of segmentation results showed significant diversity and complementarity enabling the idea of using ensembles to obtain superior results. The fusion of automatic methods reached 83.87 with majority voting and 86.20 using STAPLE that are only slightly less than fusion of all methods that achieved 86.70 (majority voting) and 88.74 (STAPLE).

CONCLUSION

Use of the new deep learning based automatic segmentation algorithms substantially increases the accuracy and repeatability for segmentation and volumetric measurements of liver. Fusion of automatic methods based on ensemble approaches exhibits best results almost without any additional time cost due to potential parallel execution of multiple models.

摘要

目的

比较新兴基于机器学习(即深度学习)的自动分割算法与成熟的半自动(交互式)方法在 CT 成像中确定活体肝移植供体肝体积的准确性和可重复性。

方法

共评估了 12 种方法(6 种半自动,6 种全自动)。半自动分割算法基于传统迭代模型,包括分水岭、快速行进、区域生长、主动轮廓和现代技术,包括稳健统计分割器和超像素。这些方法涉及某种交互机制,例如在图像上放置初始化种子或确定参数范围。自动方法基于深度学习,包括三个框架模板(DeepMedic、NiftyNet 和 U-Net),前两个应用默认参数集,后两个涉及适应性新模型设计。对于 20 名活体供者(6 个训练数据集和 12 个测试数据集),一组成像科学家和放射科医生通过对对比增强 CT 图像进行手动分割来创建地面实况。每个分割使用五个指标进行评估(即体积重叠和相对体积误差、平均/RMS/最大对称面距离)。结果映射到评分系统中,并通过取平均值计算最终等级。通过切片比较和体积分析评估准确性和可重复性。通过热图观察多样性和互补性。利用多数投票和同时真实和性能水平估计(STAPLE)算法获得个体结果的融合。

结果

确定排名前四的方法是具有 79.63、79.46 和 77.15 以及 74.50 分数的自动深度模型。用户内部评分确定为 95.14。总体而言,深度自动分割在所有指标上均优于交互式技术。地面实况肝脏的平均体积为 1409.93 ± 271.28 mL,而使用自动方法计算为 1342.21 ± 231.24 mL,使用交互式方法计算为 1201.26 ± 258.13 mL,表明自动方法具有更高的准确性和更小的变化。分割结果的定性分析表明存在显著的多样性和互补性,这使得使用集成方法获得更好的结果成为可能。使用多数投票的自动方法融合达到 83.87,使用 STAPLE 融合达到 86.20,这仅略低于所有方法融合达到的 86.70(多数投票)和 88.74(STAPLE)。

结论

使用新的基于深度学习的自动分割算法可显著提高分割和肝体积测量的准确性和可重复性。基于集合方法的自动方法融合由于潜在的并行执行多个模型而几乎没有任何额外的时间成本,从而显示出最佳结果。

相似文献

2
Liver segmentation in living liver transplant donors: comparison of semiautomatic and manual methods.
Radiology. 2005 Jan;234(1):171-8. doi: 10.1148/radiol.2341031801. Epub 2004 Nov 24.
3
Information fusion for fully automated segmentation of head and neck tumors from PET and CT images.
Med Phys. 2024 Jan;51(1):319-333. doi: 10.1002/mp.16615. Epub 2023 Jul 20.
5
Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography.
J Dent. 2021 Nov;114:103786. doi: 10.1016/j.jdent.2021.103786. Epub 2021 Aug 20.
6
Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
Int J Comput Assist Radiol Surg. 2016 May;11(5):817-26. doi: 10.1007/s11548-015-1332-9. Epub 2015 Dec 8.
7
Dr. Liver: A preoperative planning system of liver graft volumetry for living donor liver transplantation.
Comput Methods Programs Biomed. 2018 May;158:11-19. doi: 10.1016/j.cmpb.2018.01.024. Epub 2018 Jan 31.
8
nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer.
Acad Radiol. 2024 Jul;31(7):2784-2794. doi: 10.1016/j.acra.2024.01.004. Epub 2024 Feb 12.
9
10
Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation.
Eur Radiol. 2022 Jul;32(7):4780-4790. doi: 10.1007/s00330-022-08549-1. Epub 2022 Feb 10.

引用本文的文献

1
Applications of neural networks in liver transplantation.
ILIVER. 2022 Aug 9;1(2):101-110. doi: 10.1016/j.iliver.2022.07.002. eCollection 2022 Jun.
2
Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation.
J Mach Learn Biomed Imaging. 2024;2(UNSURE2023 Spec Iss):2006-2052. doi: 10.59275/j.melba.2024-g93a. Epub 2024 Oct 23.
6
Customized -RCNN and hybrid deep classifier for liver cancer segmentation and classification.
Heliyon. 2024 May 6;10(10):e30528. doi: 10.1016/j.heliyon.2024.e30528. eCollection 2024 May 30.
7
Pre-operative assessment of living liver donors' liver anatomy and volumes.
Updates Surg. 2024 Mar 25. doi: 10.1007/s13304-024-01806-6.
9
Quantitative methods for optimizing patient outcomes in liver transplantation.
Liver Transpl. 2024 Mar 1;30(3):311-320. doi: 10.1097/LVT.0000000000000325. Epub 2023 Dec 25.
10
Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation.
Med Phys. 2024 Apr;51(4):2707-2720. doi: 10.1002/mp.16820. Epub 2023 Nov 13.

本文引用的文献

1
Why rankings of biomedical image analysis competitions should be interpreted with care.
Nat Commun. 2018 Dec 6;9(1):5217. doi: 10.1038/s41467-018-07619-7.
2
Learning-Based Quality Control for Cardiac MR Images.
IEEE Trans Med Imaging. 2019 May;38(5):1127-1138. doi: 10.1109/TMI.2018.2878509. Epub 2018 Nov 1.
3
Reference values of liver volume in Caucasian population and factors influencing liver size.
Eur J Radiol. 2018 Sep;106:32-37. doi: 10.1016/j.ejrad.2018.07.005. Epub 2018 Jul 7.
4
Accuracy of preoperative CT liver volumetry in living donor hepatectomy and its clinical implications.
Hepatobiliary Surg Nutr. 2018 Jun;7(3):167-174. doi: 10.21037/hbsn.2017.08.02.
5
DRINet for Medical Image Segmentation.
IEEE Trans Med Imaging. 2018 Nov;37(11):2453-2462. doi: 10.1109/TMI.2018.2835303. Epub 2018 May 10.
6
SegAN: Adversarial Network with Multi-scale L Loss for Medical Image Segmentation.
Neuroinformatics. 2018 Oct;16(3-4):383-392. doi: 10.1007/s12021-018-9377-x.
7
NiftyNet: a deep-learning platform for medical imaging.
Comput Methods Programs Biomed. 2018 May;158:113-122. doi: 10.1016/j.cmpb.2018.01.025. Epub 2018 Jan 31.
8
Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation.
IEEE Trans Med Imaging. 2018 Feb;37(2):384-395. doi: 10.1109/TMI.2017.2743464. Epub 2017 Sep 26.
9
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
10
Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases.
Int J Comput Assist Radiol Surg. 2017 Dec;12(12):2047-2054. doi: 10.1007/s11548-017-1527-3. Epub 2017 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验