Smart Materials and Sensors Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
Nanoscience Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee, 247667, India.
Sci Rep. 2023 Aug 28;13(1):14039. doi: 10.1038/s41598-023-40822-1.
Microbial pathogens are known for causing great environmental stress, owing to which emerging challenges like lack of eco-friendly remediation measures, development of drug-resistant and mutational microbial strains, etc., warrants novel and green routes as a stepping stone to serve such concerns sustainably. In the present study, palladium (Pd) doped manganese (II, III) oxide (MnO) nanoparticles (NPs) were synthesized using an aqueous Syzygium aromaticum bud (ASAB) extract. Preliminary phytochemical analysis of ASAB extract indicates the presence of polyphenolics such as phenols, alkaloids, and flavonoids that can act as potential capping agents in NPs synthesis, which was later confirmed in FTIR analysis of pure and Pd-doped MnO NPs. XRD, Raman, and XPS analyses confirmed the Pd doping in MnO NPs. FESEM and HRTEM study reveals the mixed morphologies dominated by nanocorns appearance. Zeta potential investigation reveals high stability of the synthesized NPs in colloidal solutions. The developed Pd-doped MnO NPs were tested against two fungal phytopathogens, i.e., Sclerotinia sclerotiorum and Colletotrichum gloeosporioides, known for causing great economic losses in yield and quality of different plant species. The antifungal activity of synthesized Pd-doped MnO NPs displayed a dose-dependent response with a maximum of ~92%, and ~72% inhibition was recorded against S. sclerotiorum and C. gloeosporioides, respectively, at 1000 ppm concentration. However, C. gloeosporioides demonstrated higher sensitivity to Pd-doped MnO NPs upto 500 ppm) treatment than S. sclerotiorum. The prepared NPs also showed significant antibacterial activity against Enterococcus faecalis. The Pd-doped MnO NPs were effective even at low treatment doses, i.e., 50-100 ppm, with the highest Zone of inhibition obtained at 1000 ppm concentration. Our findings provide a novel, eco-benign, and cost-effective approach for formulating a nanomaterial composition offering multifaceted utilities as an effective antimicrobial agent.
微生物病原体以造成巨大的环境压力而闻名,因此,缺乏环保修复措施、产生抗药性和突变性微生物菌株等新出现的挑战需要新的和绿色的途径,作为可持续解决这些问题的踏脚石。在本研究中,使用水合丁香花蕾(ASAB)提取物合成了钯(Pd)掺杂的锰(II,III)氧化物(MnO)纳米颗粒(NPs)。ASAB 提取物的初步植物化学分析表明,存在多酚类物质,如酚类、生物碱和类黄酮,它们可以作为 NPs 合成的潜在封端剂,这在后面对纯和 Pd 掺杂的 MnO NPs 的傅里叶变换红外(FTIR)分析中得到了证实。X 射线衍射(XRD)、拉曼(Raman)和 X 射线光电子能谱(XPS)分析证实了 Pd 掺杂在 MnO NPs 中。FESEM 和 HRTEM 研究表明,混合形态主要由纳米角外观主导。Zeta 电位研究表明,合成的 NPs 在胶体溶液中具有高稳定性。所开发的 Pd 掺杂的 MnO NPs 针对两种真菌植物病原体进行了测试,即引起不同植物物种产量和质量巨大经济损失的白僵菌(Sclerotinia sclerotiorum)和炭疽菌(Colletotrichum gloeosporioides)。合成的 Pd 掺杂的 MnO NPs 的抗真菌活性表现出剂量依赖性响应,在 1000 ppm 浓度下,对 S. sclerotiorum 和 C. gloeosporioides 的最大抑制率分别约为 92%和 72%。然而,C. gloeosporioides 对 Pd 掺杂的 MnO NPs(高达 500 ppm)的敏感性高于 S. sclerotiorum。制备的 NPs 对粪肠球菌(Enterococcus faecalis)也表现出显著的抗菌活性。Pd 掺杂的 MnO NPs 在低处理剂量(50-100 ppm)下也很有效,在 1000 ppm 浓度下获得了最高的抑菌圈。我们的研究结果提供了一种新颖、环保且经济有效的方法,用于配制具有多方面效用的纳米材料组合物,作为一种有效的抗菌剂。