Suppr超能文献

通过选择性访问多焦点多光子显微镜进行的无扫描体积成像。

Scanless volumetric imaging by selective access multifocal multiphoton microscopy.

作者信息

Xue Yi, Berry Kalen P, Boivin Josiah R, Rowlands Christopher J, Takiguchi Yu, Nedivi Elly, So Peter T C

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.

Laser Biomedical Research Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.

出版信息

Optica. 2019 Jan 20;6(1):76-83. doi: 10.1364/optica.6.000076.

Abstract

Simultaneous, high-resolution imaging across a large number of synaptic and dendritic sites is critical for understanding how neurons receive and integrate signals. Yet, functional imaging that targets a large number of submicrometer-sized synaptic and dendritic locations poses significant technical challenges. We demonstrate a new parallelized approach to address such questions, increasing the signal-to-noise ratio by an order of magnitude compared to previous approaches. This selective access multifocal multiphoton microscopy uses a spatial light modulator to generate multifocal excitation in three dimensions (3D) and a Gaussian-Laguerre phase plate to simultaneously detect fluorescence from these spots throughout the volume. We test the performance of this system by simultaneously recording Ca dynamics from cultured neurons at 98-118 locations distributed throughout a 3D volume. This is the first demonstration of 3D imaging in a "single shot" and permits synchronized monitoring of signal propagation across multiple different dendrites.

摘要

同时对大量突触和树突部位进行高分辨率成像对于理解神经元如何接收和整合信号至关重要。然而,针对大量亚微米级突触和树突位置的功能成像带来了重大技术挑战。我们展示了一种新的并行方法来解决此类问题,与先前方法相比,信噪比提高了一个数量级。这种选择性访问多焦点多光子显微镜使用空间光调制器在三维(3D)中产生多焦点激发,并使用高斯-拉盖尔相位板同时检测整个体积中这些点的荧光。我们通过同时记录分布在3D体积中的98 - 118个位置的培养神经元的钙动力学来测试该系统的性能。这是首次“单次”进行3D成像的演示,并允许同步监测信号在多个不同树突上的传播。

相似文献

1
Scanless volumetric imaging by selective access multifocal multiphoton microscopy.
Optica. 2019 Jan 20;6(1):76-83. doi: 10.1364/optica.6.000076.
2
Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy.
J Neurophysiol. 2006 Jan;95(1):535-45. doi: 10.1152/jn.00865.2005. Epub 2005 Oct 12.
3
Spectral-resolved multifocal multiphoton microscopy with multianode photomultiplier tubes.
Opt Express. 2014 Sep 8;22(18):21368-81. doi: 10.1364/OE.22.021368.
4
Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope.
J Neurosci Methods. 2014 Jan 30;222:69-81. doi: 10.1016/j.jneumeth.2013.10.021. Epub 2013 Nov 4.
5
Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT).
Nat Commun. 2017 Oct 31;8(1):1228. doi: 10.1038/s41467-017-01031-3.
6
Multifocal microscopy for functional imaging of neural systems.
Neurophotonics. 2024 Sep;11(Suppl 1):S11515. doi: 10.1117/1.NPh.11.S1.S11515. Epub 2024 Sep 17.
8
RECENT PROGRESS IN MULTIFOCAL MULTIPHOTON MICROSCOPY.
J Innov Opt Health Sci. 2012 Jul 1;5(3). doi: 10.1142/S1793545812500186.
9
Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.
Biophys J. 2015 Feb 3;108(3):520-9. doi: 10.1016/j.bpj.2014.12.005.
10
Light-field microscopy with temporal focusing multiphoton illumination for scanless volumetric bioimaging.
Biomed Opt Express. 2022 Nov 23;13(12):6610-6620. doi: 10.1364/BOE.473807. eCollection 2022 Dec 1.

引用本文的文献

1
Two-dimensional electro-optical multiphoton microscopy.
Neurophotonics. 2024 Apr;11(2):025005. doi: 10.1117/1.NPh.11.2.025005. Epub 2024 Jun 5.
2
Computational optics for high-throughput imaging of neural activity.
Neurophotonics. 2022 Oct;9(4):041408. doi: 10.1117/1.NPh.9.4.041408. Epub 2022 May 20.
3
Neurophotonic tools for microscopic measurements and manipulation: status report.
Neurophotonics. 2022 Jan;9(Suppl 1):013001. doi: 10.1117/1.NPh.9.S1.013001. Epub 2022 Apr 27.
4
Three-dimensional multi-site random access photostimulation (3D-MAP).
Elife. 2022 Feb 14;11:e73266. doi: 10.7554/eLife.73266.

本文引用的文献

1
Scattering reduction by structured light illumination in line-scanning temporal focusing microscopy.
Biomed Opt Express. 2018 Oct 22;9(11):5654-5666. doi: 10.1364/BOE.9.005654. eCollection 2018 Nov 1.
3
Video-rate volumetric functional imaging of the brain at synaptic resolution.
Nat Neurosci. 2017 Apr;20(4):620-628. doi: 10.1038/nn.4516. Epub 2017 Feb 27.
4
Fast volumetric calcium imaging across multiple cortical layers using sculpted light.
Nat Methods. 2016 Dec;13(12):1021-1028. doi: 10.1038/nmeth.4040. Epub 2016 Oct 31.
5
Random-access scanning microscopy for 3D imaging in awake behaving animals.
Nat Methods. 2016 Dec;13(12):1001-1004. doi: 10.1038/nmeth.4033. Epub 2016 Oct 17.
6
Simultaneous Multi-plane Imaging of Neural Circuits.
Neuron. 2016 Jan 20;89(2):269-84. doi: 10.1016/j.neuron.2015.12.012. Epub 2016 Jan 7.
7
Dendritic integration: 60 years of progress.
Nat Neurosci. 2015 Dec;18(12):1713-21. doi: 10.1038/nn.4157. Epub 2015 Nov 25.
8
neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on the SWC Format.
eNeuro. 2015 Jan 2;2(1). doi: 10.1523/ENEURO.0049-14.2014. eCollection 2015 Jan-Feb.
9
An Augmented Two-Layer Model Captures Nonlinear Analog Spatial Integration Effects in Pyramidal Neuron Dendrites.
Proc IEEE Inst Electr Electron Eng. 2014 May;102(5). doi: 10.1109/JPROC.2014.2312671.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验