Suppr超能文献

地理聚集性慢性关联:从社会经济劣势到健康差异的路径

Geo-clustered chronic affinity: pathways from socio-economic disadvantages to health disparities.

作者信息

Shin Eun Kyong, Kwon Youngsang, Shaban-Nejad Arash

机构信息

Department of Pediatrics, The University of Tennessee Health Science Center - Oak-Ridge National Laboratory (UTHSC-ORNL), Center for Biomedical Informatics, Memphis, Tennessee, USA.

Department of Sociology, Korea University, Seoul, South Korea.

出版信息

JAMIA Open. 2019 Aug 1;2(3):317-322. doi: 10.1093/jamiaopen/ooz029. eCollection 2019 Oct.

Abstract

OBJECTIVE

Our objective was to develop and test a new concept (affinity) analogous to multimorbidity of chronic conditions for individuals at census tract level in Memphis, TN. The use of affinity will improve the surveillance of multiple chronic conditions and facilitate the design of effective interventions.

METHODS

We used publicly available chronic condition data (Center for Disease Control and Prevention 500 Cities project), socio-demographic data (US Census Bureau), and demographics data (Environmental Systems Research Institute). We examined the geographic pattern of the affinity of chronic conditions using global Moran's I and Getis-Ord Gi* statistics and its association with socio-economic disadvantage (poverty, unemployment, and crime) using robust regression models. We also used the most common behavioral factor, smoking, and other demographic factors (percent of the male population, percent of the population 67 years, and over and total population size) as control variables in the model.

RESULTS

A geo-distinctive pattern of clustered chronic affinity associated with socio-economic deprivation was observed. Statistical results confirmed that neighborhoods with higher rates of crime, poverty, and unemployment were associated with an increased likelihood of having a higher affinity among major chronic conditions. With the inclusion of smoking in the model, however, only the crime prevalence was statistically significantly associated with the chronic affinity.

CONCLUSION

Chronic affinity disadvantages were disproportionately accumulated in socially disadvantaged areas. We showed links between commonly co-observed chronic diseases at the population level and systematically explored the complexity of affinity and socio-economic disparities. Our affinity score, based on publicly available datasets, served as a surrogate for multimorbidity at the population level, which may assist policymakers and public health planners to identify urgent hot spots for chronic disease and allocate clinical, medical and healthcare resources efficiently.

摘要

目的

我们的目标是在田纳西州孟菲斯市的人口普查区层面,开发并测试一种类似于慢性病共病的新概念(亲和性)。亲和性的应用将改善对多种慢性病的监测,并有助于设计有效的干预措施。

方法

我们使用了公开可得的慢性病数据(疾病控制与预防中心的500个城市项目)、社会人口数据(美国人口普查局)以及人口统计学数据(环境系统研究所)。我们使用全局莫兰指数(Global Moran's I)和Getis-Ord Gi*统计量来研究慢性病亲和性的地理模式,并使用稳健回归模型研究其与社会经济劣势(贫困、失业和犯罪)的关联。我们还将最常见的行为因素吸烟以及其他人口统计学因素(男性人口百分比、67岁及以上人口百分比和总人口规模)作为模型中的控制变量。

结果

观察到一种与社会经济剥夺相关的、具有地理特色的慢性亲和性聚集模式。统计结果证实,犯罪率、贫困率和失业率较高的社区,主要慢性病之间具有较高亲和性的可能性增加。然而,在模型中纳入吸烟因素后,只有犯罪率与慢性亲和性在统计学上具有显著关联。

结论

慢性亲和性劣势在社会弱势地区积累得不成比例。我们展示了在人群层面常见的共患慢性病之间的联系,并系统地探索了亲和性与社会经济差异的复杂性。我们基于公开可用数据集得出的亲和性得分,可作为人群层面共病的替代指标,这可能有助于政策制定者和公共卫生规划者识别慢性病的紧急热点地区,并有效分配临床、医疗和卫生保健资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/6951975/c005136f6321/ooz029f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验