Zhao Lingling, Wang Junjie, Pang Long, Liu Yang, Zhang Jun
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
Institute of Space Environment and Material Science, Harbin Institute of Technology, Harbin, China.
Front Genet. 2020 Jan 9;10:1243. doi: 10.3389/fgene.2019.01243. eCollection 2019.
The computational prediction of interactions between drugs and targets is a standing challenge in drug discovery. State-of-the-art methods for drug-target interaction prediction are primarily based on supervised machine learning with known label information. However, in biomedicine, obtaining labeled training data is an expensive and a laborious process. This paper proposes a semi-supervised generative adversarial networks (GANs)-based method to predict binding affinity. Our method comprises two parts, two GANs for feature extraction and a regression network for prediction. The semi-supervised mechanism allows our model to learn proteins drugs features of both labeled and unlabeled data. We evaluate the performance of our method using multiple public datasets. Experimental results demonstrate that our method achieves competitive performance while utilizing freely available unlabeled data. Our results suggest that utilizing such unlabeled data can considerably help improve performance in various biomedical relation extraction processes, for example, Drug-Target interaction and protein-protein interaction, particularly when only limited labeled data are available in such tasks. To our best knowledge, this is the first semi-supervised GANs-based method to predict binding affinity.
药物与靶点之间相互作用的计算预测是药物研发中一项长期存在的挑战。用于药物-靶点相互作用预测的先进方法主要基于带有已知标签信息的监督式机器学习。然而,在生物医学领域,获取带标签的训练数据是一个昂贵且费力的过程。本文提出了一种基于半监督生成对抗网络(GANs)的方法来预测结合亲和力。我们的方法包括两个部分,用于特征提取的两个GAN和用于预测的回归网络。半监督机制使我们的模型能够学习标记和未标记数据的蛋白质药物特征。我们使用多个公共数据集评估了我们方法的性能。实验结果表明,我们的方法在利用免费可得的未标记数据时取得了具有竞争力的性能。我们的结果表明,利用此类未标记数据可以极大地帮助提高各种生物医学关系提取过程中的性能,例如药物-靶点相互作用和蛋白质-蛋白质相互作用,特别是当此类任务中只有有限的标记数据可用时。据我们所知,这是第一种基于半监督GANs预测结合亲和力的方法。