Suppr超能文献

传染病的离散时间预测

Discrete time forecasting of epidemics.

作者信息

Villela Daniel A M

机构信息

Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.

出版信息

Infect Dis Model. 2020 Jan 8;5:189-196. doi: 10.1016/j.idm.2020.01.002. eCollection 2020.

Abstract

Forecasting in the domain of infectious diseases aims at estimating the number of cases ahead of time during an epidemic, hence fundamentally requires understanding its dynamics. In fact, estimates about the dynamics help to predict the number of cases in an epidemic, which will depend on determining a few of defining factors such as its starting point, the turning point, growth factor, and the size of the epidemic in total number of cases. In this work a phenomenological model deals with a practical aspect often disregarded in such studies, namely that health surveillance produces counts in batches when aggregated over discrete time, such as days, weeks, months, or other time units. This model enables derivation of equations that permit both estimating key dynamics parameters and forecasting. Results using both severe acute respiratory illness data and synthetic data show that the forecasting follows very well over time the dynamics and is resilient with statistical noise, but has a delay effect due to the discrete time.

摘要

传染病领域的预测旨在提前估计疫情期间的病例数,因此从根本上来说需要了解其动态变化。实际上,对动态变化的估计有助于预测疫情中的病例数,这将取决于确定一些定义因素,如起始点、转折点、增长因素以及病例总数中的疫情规模。在这项工作中,一个现象学模型处理了此类研究中常常被忽视的一个实际方面,即当按离散时间(如天、周、月或其他时间单位)进行汇总时,健康监测会分批产生计数。该模型能够推导方程,既允许估计关键动态参数,又能进行预测。使用严重急性呼吸综合征数据和合成数据的结果表明,预测随时间很好地跟踪了动态变化,并且对统计噪声具有弹性,但由于离散时间而存在延迟效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b9d/6974765/38a898729ad1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验