Suppr超能文献

使用现象学模型来表征寨卡疫情的传播性、预测模式及最终负担。

Using Phenomenological Models to Characterize Transmissibility and Forecast Patterns and Final Burden of Zika Epidemics.

作者信息

Chowell Gerardo, Hincapie-Palacio Doracelly, Ospina Juan, Pell Bruce, Tariq Amna, Dahal Sushma, Moghadas Seyed, Smirnova Alexandra, Simonsen Lone, Viboud Cécile

机构信息

Division of Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA; Mathematical, Computational & Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.

Logic and Computation Group, EAFIT University, Medellin, Antioquia, Colombia.

出版信息

PLoS Curr. 2016 May 31;8:ecurrents.outbreaks.f14b2217c902f453d9320a43a35b9583. doi: 10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583.

Abstract

BACKGROUND

The World Health Organization declared the ongoing Zika virus (ZIKV) epidemic in the Americas a Public Health Emergency of International Concern on February 1, 2016. ZIKV disease in humans is characterized by a "dengue-like" syndrome including febrile illness and rash. However, ZIKV infection in early pregnancy has been associated with severe birth defects, including microcephaly and other developmental issues. Mechanistic models of disease transmission can be used to forecast trajectories and likely disease burden but are currently hampered by substantial uncertainty on the epidemiology of the disease (e.g., the role of asymptomatic transmission, generation interval, incubation period, and key drivers). When insight is limited, phenomenological models provide a starting point for estimation of key transmission parameters, such as the reproduction number, and forecasts of epidemic impact.

METHODS

We obtained daily counts of suspected Zika cases by date of symptoms onset from the Secretary of Health of Antioquia, Colombia during January-April 2016. We calibrated the generalized Richards model, a phenomenological model that accommodates a variety of early exponential and sub-exponential growth kinetics, against the early epidemic trajectory and generated predictions of epidemic size. The reproduction number was estimated by applying the renewal equation to incident cases simulated from the fitted generalized-growth model and assuming gamma or exponentially-distributed generation intervals derived from the literature. We estimated the reproduction number for an increasing duration of the epidemic growth phase.

RESULTS

The reproduction number rapidly declined from 10.3 (95% CI: 8.3, 12.4) in the first disease generation to 2.2 (95% CI: 1.9, 2.8) in the second disease generation, assuming a gamma-distributed generation interval with the mean of 14 days and standard deviation of 2 days. The generalized-Richards model outperformed the logistic growth model and provided forecasts within 22% of the actual epidemic size based on an assessment 30 days into the epidemic, with the epidemic peaking on day 36.

CONCLUSION

Phenomenological models represent promising tools to generate early forecasts of epidemic impact particularly in the context of substantial uncertainty in epidemiological parameters. Our findings underscore the need to treat the reproduction number as a dynamic quantity even during the early growth phase, and emphasize the sensitivity of reproduction number estimates to assumptions on the generation interval distribution.

摘要

背景

2016年2月1日,世界卫生组织宣布美洲持续的寨卡病毒(ZIKV)疫情为国际关注的突发公共卫生事件。人类的寨卡病毒病的特征是一种“登革热样”综合征,包括发热性疾病和皮疹。然而,妊娠早期的寨卡病毒感染与严重的出生缺陷有关,包括小头畸形和其他发育问题。疾病传播的机制模型可用于预测疫情发展轨迹和可能的疾病负担,但目前受到该疾病流行病学方面大量不确定性因素的阻碍(例如,无症状传播的作用、代间距、潜伏期和关键驱动因素)。当相关见解有限时,现象学模型为估计关键传播参数(如繁殖数)和预测疫情影响提供了一个起点。

方法

我们获取了2016年1月至4月期间哥伦比亚安蒂奥基亚省卫生部长按症状出现日期统计的每日疑似寨卡病例数。我们针对早期疫情轨迹校准了广义理查兹模型,这是一种能够适应各种早期指数和亚指数增长动力学的现象学模型,并生成了疫情规模的预测。通过将更新方程应用于从拟合的广义增长模型模拟的发病病例,并假设文献中得出的伽马分布或指数分布的代间距,来估计繁殖数。我们估计了疫情增长阶段持续时间增加时的繁殖数。

结果

假设代间距呈伽马分布,均值为14天,标准差为2天,繁殖数从第一代疾病中的10.3(95%置信区间:8.3,12.4)迅速下降到第二代疾病中的2.2(95%置信区间:1.9,2.8)。广义理查兹模型优于逻辑增长模型,根据疫情开始30天后的评估,其预测结果与实际疫情规模的偏差在22%以内,疫情在第36天达到峰值。

结论

现象学模型是对疫情影响进行早期预测的有前景的工具,特别是在流行病学参数存在大量不确定性的情况下。我们的研究结果强调,即使在早期增长阶段,也需要将繁殖数视为一个动态量,并强调繁殖数估计对代间距分布假设的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3374/4922743/9310672546db/Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验