Suppr超能文献

针对 HIV 感染男性中第一类疾病风险的竞争风险灵活参数建模估计方法。

Methods of competing risks flexible parametric modeling for estimation of the risk of the first disease among HIV infected men.

机构信息

Department of Epidemiology and Biostatistics, School of public health, Tehran University of Medical Sciences, Tehran, Iran.

School of Nursing, Faculty of Health Sciences, McMaster University, Hamilton, Canada.

出版信息

BMC Med Res Methodol. 2020 Jan 29;20(1):17. doi: 10.1186/s12874-020-0900-z.

Abstract

BACKGROUND

Patients infected with the Human Immunodeficiency Virus (HIV) are susceptible to many diseases. In these patients, the occurrence of one disease alters the chance of contracting another. Under such circumstances, methods for competing risks are required. Recently, competing risks analyses in the scope of flexible parametric models have risen to address this requirement. These lesser-known analyses have considerable advantages over conventional methods.

METHODS

Using data from Multi Centre AIDS Cohort Study (MACS), this paper reviews and applies methods of competing risks flexible parametric models to analyze the risk of the first disease (AIDS or non-AIDS) among HIV-infected patients. We compared two alternative subdistribution hazard flexible parametric models (SDH1 and SDH2) with the Fine & Gray model. To make a complete inference, we performed cause-specific hazard flexible parametric models for each event separately as well.

RESULTS

Both SDH1 and SDH2 provided consistent results regarding the magnitude of coefficients and risk estimations compared with estimations obtained from the Fine & Gray model, However, competing risks flexible parametric models provided more efficient and smoother estimations for the baseline risks of the first disease. We found that age at HIV diagnosis indirectly affected the risk of AIDS as the first event by increasing the number of patients who experience a non-AIDS disease prior to AIDS among > 40 years. Other significant covariates had direct effects on the risks of AIDS and non-AIDS.

DISCUSSION

The choice of an appropriate model depends on the research goals and computational challenges. The SDH1 models each event separately and requires calculating censoring weights which is time-consuming. In contrast, SDH2 models all events simultaneously and is more appropriate for large datasets, however, when the focus is on one particular event SDH1 is more preferable.

摘要

背景

感染人类免疫缺陷病毒 (HIV) 的患者易患多种疾病。在这些患者中,一种疾病的发生会改变另一种疾病的发病概率。在这种情况下,需要使用竞争风险方法。最近,在灵活参数模型范围内的竞争风险分析已经兴起,以满足这一需求。这些鲜为人知的分析方法比传统方法具有很大的优势。

方法

本文使用多中心艾滋病队列研究(MACS)的数据,回顾并应用竞争风险灵活参数模型的方法,分析 HIV 感染患者中首次发生疾病(艾滋病或非艾滋病)的风险。我们比较了两种替代的部分分布风险灵活参数模型(SDH1 和 SDH2)与 Fine & Gray 模型。为了进行完整的推断,我们还分别对每个事件进行了基于原因的风险灵活参数模型分析。

结果

与 Fine & Gray 模型相比,SDH1 和 SDH2 在系数大小和风险估计方面提供了一致的结果,但是竞争风险灵活参数模型提供了更有效和更平滑的首次疾病基线风险估计。我们发现,HIV 诊断时的年龄通过增加 >40 岁的患者在艾滋病之前经历非艾滋病疾病的人数,间接影响艾滋病作为首发疾病的风险。其他重要协变量对艾滋病和非艾滋病的风险有直接影响。

讨论

选择合适的模型取决于研究目标和计算挑战。SDH1 分别对每个事件进行建模,需要计算截断权重,这很耗时。相比之下,SDH2 同时对所有事件进行建模,更适合于大型数据集,但是当重点是一个特定事件时,SDH1 更可取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4155/6990537/356b62b367eb/12874_2020_900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验