Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
Anal Chem. 2020 Mar 3;92(5):3589-3597. doi: 10.1021/acs.analchem.9b04284. Epub 2020 Feb 13.
We have developed a new dual-tip glucose sensing scanning electrochemical microcopy (SECM) probe by covalently immobilizing the glucose oxidase (GOD) enzyme onto an ultramicro electrode (UME) to measure the local glucose consumption of () biofilms. GOD was immobilized on a novel enzyme immobilization matrix of functionalized multiwalled carbon nanotubes (f-MWCNTs) and 1-butyl-4-methylpyridinium hexafluorophosphate (ionic liquid/IL) packed into the etched Pt UME. The highly selective GOD-based SECM tip showed a high current density of 94.44 (±18.55) μA·mM·cm from 0.10 to 1.0 mM at 37 °C as a result of the synergetic effects of f-MWCNTs and ionic liquid. The detection limit of the new 25 μm diameter glucose sensor is 10.0 μM with a linear range up to 4.0 mM. The sensor was successfully used to quantify the rate of glucose consumption of biofilms in the presence of sucrose. catabolizes both glucose and sucrose, producing lactic acid, reducing the local pH, and causing dental caries. With sucrose, produces exopolysaccharides to enhance bacterial adhesion on the tooth surface; subsequent lactic acid production reduces the local pH, resulting in dental caries. Because of the high selectivity of the sensor, we were able to quantify glucose consumption in the presence of sucrose. preferentially consumed sucrose in a mixed diet of both sucrose and glucose. Furthermore, using this unique fast-response (∼2 s) glucose sensor, we were for the first time able to map the distribution of the glucose consumption profile in the local environment of biofilm. These findings provide insight into how the fast-growing creates nutrient-depleted regions that affect the survival and metabolic behavior of other bacterial species within oral biofilm.
我们开发了一种新的双尖端葡萄糖传感扫描电化学显微镜(SECM)探针,通过将葡萄糖氧化酶(GOD)酶共价固定在超微电极(UME)上来测量()生物膜的局部葡萄糖消耗。GOD 被固定在功能化多壁碳纳米管(f-MWCNTs)和 1-丁基-4-甲基吡啶六氟磷酸盐(离子液体/IL)的新型酶固定基质上,并填充到刻蚀的 Pt UME 中。高选择性的基于 GOD 的 SECM 尖端在 37°C 时从 0.10 到 1.0 mM 显示出 94.44(±18.55)μA·mM·cm 的高电流密度,这是 f-MWCNTs 和离子液体协同作用的结果。新的 25 μm 直径葡萄糖传感器的检测限为 10.0 μM,线性范围高达 4.0 mM。该传感器成功用于量化蔗糖存在下()生物膜的葡萄糖消耗率。()同时代谢葡萄糖和蔗糖,产生乳酸,降低局部 pH 值,并导致龋齿。有了蔗糖,()会产生胞外多糖来增强细菌在牙齿表面的粘附;随后乳酸的产生会降低局部 pH 值,导致龋齿。由于传感器的高选择性,我们能够在蔗糖存在下定量葡萄糖消耗。()在蔗糖和葡萄糖的混合饮食中优先消耗蔗糖。此外,使用这种独特的快速响应(∼2 s)葡萄糖传感器,我们首次能够绘制()生物膜局部环境中葡萄糖消耗分布的图谱。这些发现提供了深入了解快速生长的()如何在口腔生物膜内创造出影响其他细菌物种存活和代谢行为的营养耗尽区域。