Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States.
Department of Restorative Dentistry, Oregon Health & Science University , Portland, Oregon 97201, United States.
Anal Chem. 2017 Jul 18;89(14):7709-7718. doi: 10.1021/acs.analchem.7b01677. Epub 2017 Jun 28.
Hydrogen peroxide (HO) is a highly relevant metabolite in many biological processes, including the oral microbiome. To study this metabolite, we developed a 25 μm diameter, highly sensitive, nonenzymatic HO sensor with a detection limit of 250 nM and a broad linear range of 250 nM to 7 mM. The sensor used the synergistic activity of the catalytically active Pt nanoparticles on a high surface area multiwalled carbon nanotube and conducting ionic liquid matrix to achieve high sensitivity (2.4 ± 0.24 mA cm mM) for HO oxidation. The unique composite allowed us to miniaturize the sensor and couple it with a Pt electrode (25 μm diameter each) for use as a dual scanning electrochemical microscopy probe. We could detect 65 ± 10 μM HO produced by Streptococcus gordonii (Sg) in a simulated biofilm at 50 μm above its surface in the presence of 1 mM glucose and artificial saliva solution (pH 7.2 at 37 °C). Because of its high stability and low detection limit, the sensor showed a promising chemical image of HO produced by Sg biofilms. We were also able to detect 30 μM HO at 50 μm above the biofilm in the presence of the HO-decomposing salivary lactoperoxidase and thiocyanate, which would not otherwise be possible using an existing HO assay. Thus, this sensor can potentially find applications in the study of other important biological processes in a complex matrix where circumstances demand a low detection limit in a compact space.
过氧化氢(HO)是许多生物过程中高度相关的代谢物,包括口腔微生物组。为了研究这种代谢物,我们开发了一种 25μm 直径的、高灵敏度、非酶 HO 传感器,其检测限为 250nM,线性范围为 250nM 至 7mM。该传感器利用高表面积多壁碳纳米管和导电离子液体基质上催化活性 Pt 纳米颗粒的协同活性,实现了对 HO 氧化的高灵敏度(2.4±0.24mAcmmM)。独特的复合材料使我们能够将传感器微型化,并将其与 Pt 电极(直径均为 25μm)耦合,用作双扫描电化学显微镜探头。我们可以在 1mM 葡萄糖和人工唾液溶液(37°C 时 pH7.2)存在的情况下,在其表面上方 50μm 处检测到由链球菌(Sg)产生的 65±10μM 的 HO。由于其高稳定性和低检测限,该传感器显示了链球菌生物膜产生的 HO 的有前途的化学图像。在存在分解 HO 的唾液乳过氧化物酶和硫氰酸盐的情况下,我们还能够在生物膜上方 50μm 处检测到 30μM 的 HO,否则使用现有的 HO 测定法是不可能的。因此,该传感器在复杂基质中研究其他重要生物过程时可能具有应用潜力,在这种情况下,需要在紧凑的空间内具有低检测限。