Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States.
Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States.
Anal Chem. 2017 Oct 17;89(20):11044-11052. doi: 10.1021/acs.analchem.7b03050. Epub 2017 Sep 29.
We have developed a carbon-based, fast-response potentiometric pH microsensor for use as a scanning electrochemical microscopy (SECM) chemical probe to quantitatively map the microbial metabolic exchange between two bacterial species, commensal Streptococcus gordonii and pathogenic Streptococcus mutans. The 25 μm diameter H ion-selective microelectrode or pH microprobe showed a Nernstian slope of 59 mV/pH and high selectivity against major ions such Na, K, Ca, and Mg. In addition, the unique conductive membrane composition aided us in performing an amperometric approach curve to position the probe and obtain a high-resolution pH map of the microenvironment produced by the lactate-producing S. mutans biofilm. The x-directional pH scan over S. mutans also showed the influence of the pH profile on the metabolic activity of another species, HO-producing S. gordonii. When these bacterial species were placed in close spatial proximity, we observed an initial increase in the local HO concentration of approximately 12 ± 5 μM above S. gordonii, followed by a gradual decrease in HO concentration (>30 min) to almost zero as lactate was produced, and a subsequent decrease in pH with a more pronounced metabolic output of S. mutans. These results were supported by gene expression and confocal fluorescence microscopic studies. Our findings illustrate that HO-producing S. gordonii is dominant while the buffering capacity of saliva is valid (∼pH 6.0) but is gradually taken over by S. mutans as the latter species slowly starts decreasing the local pH to 5.0 or less by producing lactic acid. Our observations demonstrate the unique capability of our SECM chemical probes for studying real-time metabolic interactions between two bacterial species, which would not otherwise be achievable in traditional assays.
我们开发了一种基于碳的、快速响应的电位 pH 微传感器,用作扫描电化学显微镜 (SECM) 的化学探头,以定量绘制两种细菌(共生链球菌和致病性变形链球菌)之间的微生物代谢交换图。25 μm 直径的 H+离子选择性微电极或 pH 微探针具有 59 mV/pH 的 Nernst 斜率,对 Na+、K+、Ca2+和 Mg2+等主要离子具有高选择性。此外,独特的导电膜组成帮助我们进行了电流法曲线分析,以定位探头并获得由产乳酸 S. mutans 生物膜产生的微环境的高分辨率 pH 图。在 S. mutans 上进行的 x 方向 pH 扫描也显示了 pH 分布对另一种产 HO 的 S. gordonii 代谢活性的影响。当这些细菌种类紧密空间接近时,我们观察到局部 HO 浓度最初增加约 12 ± 5 μM,超过 S. gordonii,随后 HO 浓度逐渐降低(>30 分钟),几乎为零,因为产生了乳酸,随后 pH 下降,S. mutans 的代谢输出更为明显。这些结果得到了基因表达和共聚焦荧光显微镜研究的支持。我们的发现表明,产 HO 的 S. gordonii 在唾液缓冲能力有效的情况下(约 pH 6.0)占主导地位,但随着后者缓慢开始通过产生乳酸将局部 pH 降低到 5.0 或更低,它逐渐被 S. mutans 取代。我们的观察表明,我们的 SECM 化学探头具有独特的能力,可以研究两种细菌之间的实时代谢相互作用,这在传统测定中是不可能实现的。