Suppr超能文献

用于高效热传导和光电子应用的大面积垂直取向少层二硫化钼

Large Area Vertically Oriented Few-Layer MoS for Efficient Thermal Conduction and Optoelectronic Applications.

作者信息

Majee Bishnu Pada, Singh Ankita, Prakash Rajiv, Mishra Ashish Kumar

机构信息

School of Materials Science and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi 221005 , India.

出版信息

J Phys Chem Lett. 2020 Feb 20;11(4):1268-1275. doi: 10.1021/acs.jpclett.9b03726. Epub 2020 Jan 31.

Abstract

Large area growth of MoS can show great advances in optoelectronic devices due to its unique optical and electronic properties. Here, we directly grow vertically oriented and interconnected few-layer MoS over 1 × 1 cm of p-type Si substrate using CVD technique. We report for the first time the thermal conductivity of vertically oriented few-layer (VFL) MoS using the optothermal Raman technique. The reduced phonon-defect scattering due to minimal defects and strains in VFL MoS results in excellent thermal conductivity of 100 ± 14 W m K at room temperature. The photoluminescence and DFT study confirm the semiconducting behavior of VFL-MoS. The VFL-MoS/Si photodiode shows high photoresponsivity of 7.37 A W at -2.0 V bias under 0.15 mW cm intensity of 532 nm laser. The enhanced light trapping and highly exposed edges of VFL MoS due to vertical orientation, formation of efficient p-n junction at the MoS/Si interface and effective charge separation leads to the excellent performance of grown VFL-MoS for optoelectronic applications.

摘要

由于其独特的光学和电子特性,大面积生长的二硫化钼(MoS)在光电器件方面可展现出巨大进展。在此,我们使用化学气相沉积(CVD)技术在1×1平方厘米的p型硅衬底上直接生长垂直取向且相互连接的少层MoS。我们首次使用光热拉曼技术报道了垂直取向少层(VFL)MoS的热导率。由于VFL MoS中的缺陷和应变最小,声子 - 缺陷散射减少,导致其在室温下具有100±14 W m⁻¹ K⁻¹的优异热导率。光致发光和密度泛函理论(DFT)研究证实了VFL - MoS的半导体行为。在532 nm激光强度为0.15 mW cm⁻²、偏压为 - 2.0 V的条件下,VFL - MoS / Si光电二极管显示出7.37 A W⁻¹的高光响应性。由于垂直取向,VFL MoS的光捕获增强且边缘高度暴露,在MoS / Si界面形成了有效的p - n结以及有效的电荷分离,这使得生长的VFL - MoS在光电子应用中具有优异性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验