Chen Xiangguang, Chen Xiaofeng, Yang Jiada, Li Yulin, Fan Weixiong, Yang Zhiqi
From the Department of Radiology, Meizhou People's Hospital, Meizhou, Guangdong, China.
J Comput Assist Tomogr. 2020 Mar/Apr;44(2):275-283. doi: 10.1097/RCT.0000000000000978.
The objective of this study was to develop a nomogrom for prediction of pathological complete response (PCR) to neoadjuvant chemotherapy in breast cancer patients.
Ninety-one patients were analyzed. A total of 396 radiomics features were extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and apparent diffusion coefficient (ADC) maps. The least absolute shrinkage and selection operator was selected for data dimension reduction to build a radiomics signature. Finally, the nomogram was built to predict PCR.
The radiomics signature of the model that combined DCE-MRI and ADC maps showed a higher performance (area under the receiver operating characteristic curve [AUC], 0.848) than the models with DCE-MRI (AUC, 0.750) or ADC maps (AUC, 0.785) alone in the training set. The proposed model, which included combined radiomics signature, estrogen receptor, and progesterone receptor, yielded a maximum AUC of 0.837 in the testing set.
The combined radiomics features from DCE-MRI and ADC data may serve as potential predictor markers for predicting PCR. The nomogram could be used as a quantitative tool to predict PCR.
本研究的目的是开发一种列线图,用于预测乳腺癌患者对新辅助化疗的病理完全缓解(PCR)。
对91例患者进行分析。从动态对比增强磁共振成像(DCE-MRI)和表观扩散系数(ADC)图中提取了总共396个影像组学特征。选择最小绝对收缩和选择算子进行数据降维,以构建影像组学特征。最后,构建列线图以预测PCR。
在训练集中,结合DCE-MRI和ADC图的模型的影像组学特征表现出比单独使用DCE-MRI(AUC,0.750)或ADC图(AUC,0.785)的模型更高的性能(受试者操作特征曲线下面积[AUC],0.848)。所提出的模型,包括联合影像组学特征、雌激素受体和孕激素受体,在测试集中的最大AUC为0.837。
来自DCE-MRI和ADC数据的联合影像组学特征可能作为预测PCR的潜在预测标志物。列线图可作为预测PCR的定量工具。