Suppr超能文献

结合动态对比增强磁共振成像和表观扩散系数图构建影像组学列线图以预测乳腺癌患者新辅助化疗后的病理完全缓解

Combining Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Apparent Diffusion Coefficient Maps for a Radiomics Nomogram to Predict Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Patients.

作者信息

Chen Xiangguang, Chen Xiaofeng, Yang Jiada, Li Yulin, Fan Weixiong, Yang Zhiqi

机构信息

From the Department of Radiology, Meizhou People's Hospital, Meizhou, Guangdong, China.

出版信息

J Comput Assist Tomogr. 2020 Mar/Apr;44(2):275-283. doi: 10.1097/RCT.0000000000000978.

Abstract

OBJECTIVE

The objective of this study was to develop a nomogrom for prediction of pathological complete response (PCR) to neoadjuvant chemotherapy in breast cancer patients.

METHODS

Ninety-one patients were analyzed. A total of 396 radiomics features were extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and apparent diffusion coefficient (ADC) maps. The least absolute shrinkage and selection operator was selected for data dimension reduction to build a radiomics signature. Finally, the nomogram was built to predict PCR.

RESULTS

The radiomics signature of the model that combined DCE-MRI and ADC maps showed a higher performance (area under the receiver operating characteristic curve [AUC], 0.848) than the models with DCE-MRI (AUC, 0.750) or ADC maps (AUC, 0.785) alone in the training set. The proposed model, which included combined radiomics signature, estrogen receptor, and progesterone receptor, yielded a maximum AUC of 0.837 in the testing set.

CONCLUSIONS

The combined radiomics features from DCE-MRI and ADC data may serve as potential predictor markers for predicting PCR. The nomogram could be used as a quantitative tool to predict PCR.

摘要

目的

本研究的目的是开发一种列线图,用于预测乳腺癌患者对新辅助化疗的病理完全缓解(PCR)。

方法

对91例患者进行分析。从动态对比增强磁共振成像(DCE-MRI)和表观扩散系数(ADC)图中提取了总共396个影像组学特征。选择最小绝对收缩和选择算子进行数据降维,以构建影像组学特征。最后,构建列线图以预测PCR。

结果

在训练集中,结合DCE-MRI和ADC图的模型的影像组学特征表现出比单独使用DCE-MRI(AUC,0.750)或ADC图(AUC,0.785)的模型更高的性能(受试者操作特征曲线下面积[AUC],0.848)。所提出的模型,包括联合影像组学特征、雌激素受体和孕激素受体,在测试集中的最大AUC为0.837。

结论

来自DCE-MRI和ADC数据的联合影像组学特征可能作为预测PCR的潜在预测标志物。列线图可作为预测PCR的定量工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验