Suppr超能文献

在环境条件下,使用沃拉斯顿探针通过非接触式扫描热显微镜进行温度分布的定量测量。

Quantitative temperature distribution measurements by non-contact scanning thermal microscopy using Wollaston probes under ambient conditions.

作者信息

Zhang Yun, Zhu Wenkai, Han Liang, Borca-Tasciuc Theodorian

机构信息

Mechanical, Aerospace, and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

出版信息

Rev Sci Instrum. 2020 Jan 1;91(1):014901. doi: 10.1063/1.5099981.

Abstract

Temperature measurement using Scanning Thermal Microscopy (SThM) usually involves heat transfer across the mechanical contact and liquid meniscus between the thermometer probe and the sample. Variations in contact conditions due to capillary effects at sample-probe contact and wear and tear of the probe and sample interfere with the accurate determination of the sample surface temperature. This paper presents a method for quantitative temperature sensing using SThM in noncontact mode. In this technique, the thermal probe is scanned above the sample at a distance comparable with the mean free path of ambient gas molecules. A Three-Dimensional Finite Element Model (3DFEM) that includes the details of the heat transfer between the sample and the probe in the diffusive and transition heat conduction regimes was found to accurately simulate the temperature profiles measured using a Wollaston thermal probe setup. In order to simplify the data reduction for the local sample temperature, analytical models were developed for noncontact measurements using Wollaston probes. Two calibration strategies (active calibration and passive calibration) for the sample-probe thermal exchange parameters are presented. Both calibration methods use sample-probe thermal exchange resistance correlations developed using the 3DFEM to accurately capture effects due to sample-probe gap geometry and the thermal exchange radii in the diffusive and transition regimes. The analytical data reduction methods were validated by experiments and 3DFEM simulations using microscale heaters deposited on glass and on dielectric films on silicon substrates. Experimental and predicted temperature profiles were independent of the probe-sample clearance in the range of 100-200 nm, where the sample-probe thermal exchange resistance is practically constant. The difference between the SThM determined and actual average microheater temperature rise was between 0.1% and 0.5% when using active calibration on samples with known thermal properties and between ∼1.6% and 3.5% when using passive calibration, which yields robust sample-probe thermal exchange parameters that can be used also on samples with unknown thermal properties.

摘要

使用扫描热显微镜(SThM)进行温度测量通常涉及热量通过温度计探头与样品之间的机械接触和液体弯月面进行传递。由于样品 - 探头接触处的毛细管效应以及探头和样品的磨损,接触条件的变化会干扰样品表面温度的准确测定。本文提出了一种在非接触模式下使用SThM进行定量温度传感的方法。在该技术中,热探头在样品上方扫描,扫描距离与周围气体分子的平均自由程相当。发现一个三维有限元模型(3DFEM),该模型包含了扩散和过渡热传导区域中样品与探头之间热传递的细节,能够准确模拟使用沃拉斯顿热探头装置测量的温度分布。为了简化局部样品温度的数据处理,开发了用于使用沃拉斯顿探头进行非接触测量的分析模型。提出了两种针对样品 - 探头热交换参数的校准策略(主动校准和被动校准)。两种校准方法都使用通过3DFEM开发的样品 - 探头热交换电阻相关性,以准确捕捉由于样品 - 探头间隙几何形状以及扩散和过渡区域中的热交换半径所产生的影响。通过实验和使用沉积在玻璃和硅基板上的介电膜上的微尺度加热器进行的3DFEM模拟,验证了分析数据处理方法。在100 - 200 nm范围内,实验和预测的温度分布与探头 - 样品间隙无关,在此范围内样品 - 探头热交换电阻实际上是恒定的。当对具有已知热特性的样品使用主动校准时,SThM确定的温度与实际微加热器平均温度升高之间的差异在0.1%至0.5%之间;当使用被动校准时,该差异在约1.6%至3.5%之间,这产生了稳健的样品 - 探头热交换参数,也可用于热特性未知的样品。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验