Bettencourt Luís M A, Yang Vicky Chuqiao, Lobo José, Kempes Christopher P, Rybski Diego, Hamilton Marcus J
Mansueto Institute for Urban Innovation, Department of Ecology and Evolution and Department of Sociology, University of Chicago, Chicago, IL 60617, USA.
Santa Fe institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
J R Soc Interface. 2020 Feb;17(163):20190846. doi: 10.1098/rsif.2019.0846. Epub 2020 Feb 5.
Scaling is a general analytical framework used by many disciplines-from physics to biology and the social sciences-to characterize how population-averaged properties of a collective vary with its size. The observation of scale invariance over some range identifies general system types, be they ideal gases, ecosystems or cities. The use of scaling in the analysis of cities quantifies many of their arguably fundamental general characteristics, especially their capacity to create interrelated economies of scale in infrastructure and increasing returns to scale in socio-economic activities. However, the measurement of these effects, and the relationship of observable parameters to theory, hinge on how scaling analysis is used empirically. Here, we show how two equivalent approaches to urban scaling-cross-sectional and temporal-lead to the measurement of different mixtures of the same fundamental parameters describing pure scale and pure temporal phenomena. Specifically, temporal exponents are sensitive to the intensive growth of urban quantities and to circumstances when population growth vanishes, leading to instabilities and infinite divergences. These spurious effects are avoided in cross-sectional scaling, which is more common and closer to theory in terms of quantitative testable expectations for its parameters.
标度律是许多学科(从物理学到生物学以及社会科学)所使用的一种通用分析框架,用于描述一个集体的总体平均属性如何随其规模而变化。在某个范围内观察到的标度不变性可识别出一般的系统类型,无论是理想气体、生态系统还是城市。在城市分析中使用标度律可以量化许多其可论证的基本总体特征,特别是它们在基础设施方面创造相互关联的规模经济以及在社会经济活动中实现规模收益递增的能力。然而,这些效应的度量以及可观测参数与理论的关系,取决于标度分析在实证中的运用方式。在此,我们展示了城市标度律的两种等效方法——横截面法和时间法——如何导致对描述纯标度和纯时间现象的相同基本参数的不同混合进行度量。具体而言,时间指数对城市数量的集约增长以及人口增长消失时的情况敏感,从而导致不稳定性和无穷大发散。在横截面标度律中可避免这些虚假效应,就其参数的定量可测试预期而言,横截面标度律更为常见且更接近理论。