Li Yanzhen, Song Daniel, Mao Lan, Abraham Dennis M, Bursac Nenad
Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
Department of Computer Science, Duke University, Durham, NC, 27708, USA; Department of Biology, Duke University, Durham, NC, 27708, USA.
Biomaterials. 2020 Apr;236:119824. doi: 10.1016/j.biomaterials.2020.119824. Epub 2020 Jan 29.
In response to heart injury, inflammation, or mechanical overload, quiescent cardiac fibroblasts (CFs) can become activated myofibroblasts leading to pathological matrix remodeling and decline in cardiac function. Specific targeting of fibroblasts may thus enable new therapeutic strategies to delay or reverse the progression of heart failure and cardiac fibrosis. However, it remains unknown if all CFs are equally responsive to specific pathological insults and if there exist sub-populations of resident fibroblasts in the heart that have distinctive pathogenic phenotypes. Here, we show that in response to transverse aortic constriction (TAC)-induced heart failure, previously uncharacterized Thy1 (Thy1-/MEFSK4+/CD45-/CD31-) fraction of mouse ventricular fibroblasts became more abundant and attained a more activated, pro-fibrotic myofibroblast phenotype compared to Thy1 fraction. In a tissue-engineered 3D co-culture model of healthy cardiomyocytes and freshly isolated CFs, Thy1 CFs from TAC hearts significantly decreased cardiomyocyte contractile function and calcium transient amplitude, and increased extracellular collagen deposition yielding a profibrotic heart tissue phenotype. In vivo, mice with global knockout of Thy1 developed more severe cardiac dysfunction and fibrosis in response to TAC-induced heart failure than wild-type mice. Taken together, our studies identify cardiac myofibroblasts lacking Thy1 as a pathogenic CF fraction in cardiac fibrosis and suggest important roles of Thy1 in pathophysiology of heart failure.
针对心脏损伤、炎症或机械负荷过重,静止的心脏成纤维细胞(CFs)可激活成为肌成纤维细胞,导致病理性基质重塑和心脏功能下降。因此,特异性靶向成纤维细胞可能会带来新的治疗策略,以延缓或逆转心力衰竭和心脏纤维化的进展。然而,目前尚不清楚所有的CFs是否对特定的病理损伤具有同等反应,以及心脏中是否存在具有独特致病表型的驻留成纤维细胞亚群。在此,我们发现,在横断主动脉缩窄(TAC)诱导的心力衰竭模型中,与Thy1部分相比,小鼠心室成纤维细胞中先前未被鉴定的Thy1(Thy1-/MEFSK4+/CD45-/CD31-)部分变得更加丰富,并获得了更活化、促纤维化的肌成纤维细胞表型。在健康心肌细胞与新鲜分离的CFs构建的组织工程3D共培养模型中,来自TAC心脏的Thy1 CFs显著降低了心肌细胞的收缩功能和钙瞬变幅度,并增加了细胞外胶原沉积,产生了促纤维化的心脏组织表型。在体内,与野生型小鼠相比,Thy1基因完全敲除的小鼠在TAC诱导的心力衰竭模型中出现了更严重的心脏功能障碍和纤维化。综上所述我们的研究确定了缺乏Thy1的心脏肌成纤维细胞是心脏纤维化中的致病性CF亚群,并提示Thy1在心力衰竭病理生理学中具有重要作用。