Suppr超能文献

自动调压持续气道正压通气治疗儿童阻塞性睡眠呼吸暂停

Auto-titrating CPAP for the treatment of obstructive sleep apnea in children.

作者信息

Khaytin Ilya, Tapia Ignacio E, Xanthopoulos Melissa S, Cielo Christopher, Kim Ji Young, Smith Julianne, Matthews Edward C, Beck Suzanne E

机构信息

Sleep Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

J Clin Sleep Med. 2020 Jun 15;16(6):871-878. doi: 10.5664/jcsm.8348.

Abstract

STUDY OBJECTIVES

In-laboratory titration polysomnography (PSG) is standard to determine optimal therapeutic continuous positive airway pressure (CPAP) in children with obstructive sleep apnea (OSA). The use of auto-titrating CPAP devices (autoCPAP) as an alternative to CPAP titration has not been well studied in children. We hypothesized that autoCPAP-derived pressures (P, P, P) would be similar to titration PSG pressure (P).

METHODS

This is a retrospective study of children with OSAS initiated on autoCPAP between 2007 and 2017, who used autoCPAP for at least 2 h/night and who had adequate titration PSG were included in the analysis. AutoCPAP-derived pressures were obtained from use downloads and compared with P. P predictive factors were analyzed by median regression. Nonparametric methods were used for analysis.

RESULTS

Of 110 children initiated on autoCPAP, 44 satisfied the inclusion criteria. Age (median (interquartile range)) was 13.01 (9.98-16.72) years, and 63.6% were obese. P median (interquartile range) was 8 (7-11) cmH₂O, mean autoCPAP-derived pressure (P) was 6.2 (5.6-7.6) cmH₂O, peak mean pressure (P) was 9.4 (7.7-11.1) cmH₂O, and average device pressure ≤ 90% of the time (P) was 8.1 (7.2-9.7) cmH₂O. AutoCPAP-derived pressures correlated with P (P < .05). P was lower than the other 3 pressures (P < .0002). Median regression analysis demonstrated that after adjusting for patient characteristics such as age, sex, and obesity status, autoCPAP-derived pressures remained significant predictors of P (P < .05). There were no significant interactions between these patient characteristics and autoCPAP-derived pressures.

CONCLUSIONS

This study demonstrates that autoCPAP-derived pressures correlate with the titration PSG-derived pressures. These results indicate that autoCPAP can be used in the pediatric population and can determine pressures that are close to the titration pressures.

摘要

研究目的

在实验室进行滴定多导睡眠图(PSG)是确定阻塞性睡眠呼吸暂停(OSA)患儿最佳治疗持续气道正压通气(CPAP)的标准方法。作为CPAP滴定的替代方法,自动滴定CPAP设备(autoCPAP)在儿童中的应用尚未得到充分研究。我们假设autoCPAP得出的压力(P、P、P)将与滴定PSG压力(P)相似。

方法

这是一项对2007年至2017年间开始使用autoCPAP的OSAS患儿的回顾性研究,分析纳入了每晚使用autoCPAP至少2小时且有足够滴定PSG的患儿。从使用记录中获取autoCPAP得出的压力,并与P进行比较。通过中位数回归分析P的预测因素。采用非参数方法进行分析。

结果

在110名开始使用autoCPAP的患儿中,44名符合纳入标准。年龄(中位数(四分位间距))为13.01(9.98 - 16.72)岁,63.6%为肥胖患儿。P的中位数(四分位间距)为8(7 - 11)cmH₂O,autoCPAP得出的平均压力(P)为6.2(5.6 - 7.6)cmH₂O,峰值平均压力(P)为9.4(7.7 - 11.1)cmH₂O,设备平均压力≤90%时间时的压力(P)为8.1(7.2 - 9.7)cmH₂O。autoCPAP得出的压力与P相关(P <.05)。P低于其他3种压力(P <.0002)。中位数回归分析表明,在调整年龄、性别和肥胖状况等患者特征后,autoCPAP得出的压力仍然是P的显著预测因素(P <.05)。这些患者特征与autoCPAP得出的压力之间没有显著的相互作用。

结论

本研究表明,autoCPAP得出的压力与滴定PSG得出的压力相关。这些结果表明,autoCPAP可用于儿科人群,并可确定接近滴定压力的压力值。

相似文献

引用本文的文献

6
Recent advances in paediatric sleep disordered breathing.小儿睡眠呼吸障碍的最新进展
Breathe (Sheff). 2022 Sep;18(3):220151. doi: 10.1183/20734735.0151-2022. Epub 2022 Oct 11.

本文引用的文献

3
Pediatric Obstructive Sleep Apnea.小儿阻塞性睡眠呼吸暂停
Otolaryngol Clin North Am. 2016 Dec;49(6):1449-1464. doi: 10.1016/j.otc.2016.07.001.
5
Pediatric Sleep Apnea Syndrome: An Update.小儿睡眠呼吸暂停综合征:最新进展。
J Allergy Clin Immunol Pract. 2016 Sep-Oct;4(5):852-61. doi: 10.1016/j.jaip.2016.02.022. Epub 2016 Jun 30.
6
Obstructive Sleep Apnoea: Children are not little Adults.阻塞性睡眠呼吸暂停:儿童不是小大人。
Paediatr Respir Rev. 2017 Jan;21:72-79. doi: 10.1016/j.prrv.2016.02.003. Epub 2016 Apr 21.
7
Domiciliary noninvasive positive airway pressure therapy in children.儿童家庭无创正压通气治疗
Pediatr Pulmonol. 2016 Apr;51(4):335-48. doi: 10.1002/ppul.23353. Epub 2015 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验