Suppr超能文献

利用全国性疾病登记系统评估机器学习方法对脑卒中结局的预测。

Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry.

机构信息

Center for Information Technology, National Institutes of Health, Bethesda, MD, United States; Bioinformatics Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD, United States.

Bioinformatics Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD, United States; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.

出版信息

Comput Methods Programs Biomed. 2020 Jul;190:105381. doi: 10.1016/j.cmpb.2020.105381. Epub 2020 Feb 1.

Abstract

INTRODUCTION

Being able to predict functional outcomes after a stroke is highly desirable for clinicians. This allows clinicians to set reasonable goals with patients and relatives, and to reach shared after-care decisions for recovery or rehabilitation. The aim of this study was to apply various machine learning (ML) methods for 90-day stroke outcome predictions, using a nationwide disease registry.

METHODS

This study used the Taiwan Stroke Registry (TSR) which has prospectively collected data from stroke patients since 2006. Three known ML models (support vector machine, random forest, and artificial neural network), and a hybrid artificial neural network were implemented and evaluated by 10-time repeated hold-out with 10-fold cross-validation.

RESULTS

ML techniques present over 0.94 AUC in both ischemic and hemorrhagic stroke using preadmission and inpatient data. By adding follow-up data, the prediction ability improved to 0.97 AUC. We screened 206 clinical variables to identify 17 important features from the ischemic stroke dataset and 22 features from the hemorrhagic stroke dataset without losing much performance. Error analysis revealed that most prediction errors come from more severe stroke patients.

CONCLUSION

The study showed that ML techniques trained from large, cross-reginal registry datasets were able to predict functional outcome after stroke with high accuracy. The follow-up data is important which can further improve the predictive models' performance. With similar performances among different ML techniques, the algorithm's characteristics and performance on severe stroke patients will be the primary focus when we further develop inference models and artificial intelligence tools for potential medical.

摘要

简介

对于临床医生来说,能够预测中风后的功能结果是非常理想的。这使临床医生能够与患者和家属一起设定合理的目标,并就康复或康复后的护理决策达成共识。本研究旨在应用各种机器学习(ML)方法,通过全国性疾病登记处对 90 天的中风结果进行预测。

方法

本研究使用了台湾中风登记处(TSR),该登记处自 2006 年以来一直前瞻性地收集中风患者的数据。实施并评估了三种已知的 ML 模型(支持向量机、随机森林和人工神经网络)和一种混合人工神经网络,通过 10 次重复留一法和 10 折交叉验证进行评估。

结果

ML 技术在缺血性和出血性中风中使用入院前和住院期间的数据,其 AUC 均超过 0.94。通过添加随访数据,预测能力提高到 0.97 AUC。我们筛选了 206 个临床变量,从缺血性中风数据集识别出 17 个重要特征,从出血性中风数据集识别出 22 个特征,而不会损失太多性能。误差分析表明,大多数预测错误来自更严重的中风患者。

结论

该研究表明,从大型、跨区域登记处数据集训练的 ML 技术能够以高准确度预测中风后的功能结果。随访数据很重要,它可以进一步提高预测模型的性能。由于不同 ML 技术的性能相似,因此在进一步开发推理模型和人工智能工具时,算法的特征和对严重中风患者的性能将是主要关注点。

相似文献

8
Prediction of stroke-associated hospital-acquired pneumonia: Machine learning approach.卒中相关性医院获得性肺炎的预测:机器学习方法。
J Stroke Cerebrovasc Dis. 2025 Feb;34(2):108200. doi: 10.1016/j.jstrokecerebrovasdis.2024.108200. Epub 2024 Dec 12.

引用本文的文献

本文引用的文献

5
Machine Learning in Medicine.医学中的机器学习
Circulation. 2015 Nov 17;132(20):1920-30. doi: 10.1161/CIRCULATIONAHA.115.001593.
10
Prediction of stroke thrombolysis outcome using CT brain machine learning.使用脑部CT机器学习预测中风溶栓结果
Neuroimage Clin. 2014 Mar 30;4:635-40. doi: 10.1016/j.nicl.2014.02.003. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验