Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.
Hippocampus. 2020 Apr;30(4):367-383. doi: 10.1002/hipo.23191. Epub 2020 Feb 11.
Grid cells in medial entorhinal cortex are notoriously variable in their responses, despite the striking hexagonal arrangement of their spatial firing fields. Indeed, when the animal moves through a firing field, grid cells often fire much more vigorously than predicted or do not fire at all. The source of this trial-to-trial variability is not completely understood. By analyzing grid-cell spike trains from mice running in open arenas and on linear tracks, we characterize the phenomenon of "missed" firing fields using the statistical theory of zero inflation. We find that one major cause of grid-cell variability lies in the spatial representation itself: firing fields are not as strongly anchored to spatial location as the averaged grid suggests. In addition, grid fields from different cells drift together from trial to trial, regardless of whether the environment is real or virtual, or whether the animal moves in light or darkness. Spatial realignment across trials sharpens the grid representation, yielding firing fields that are more pronounced and significantly narrower. These findings indicate that ensembles of grid cells encode relative position more reliably than absolute position.
尽管内侧缰状回皮层的网格细胞的空间放电场呈现出明显的六边形排列,但它们的反应却极具变异性。事实上,当动物在一个放电场中移动时,网格细胞的放电强度往往比预期的要高得多,或者根本不放电。这种试验间变异性的来源尚不完全清楚。通过分析在开放场地和线性轨道上奔跑的小鼠的网格细胞尖峰序列,我们使用零膨胀的统计理论来描述“缺失”放电场的现象。我们发现,网格细胞变异性的一个主要原因在于空间表示本身:与平均网格所暗示的情况相比,放电场并没有那么强烈地与空间位置相锚定。此外,无论环境是真实的还是虚拟的,无论动物是在光下还是黑暗中移动,来自不同细胞的网格场都会在试验间一起漂移。跨试验的空间重新调整会使网格表示更加清晰,从而产生更明显且显著变窄的放电场。这些发现表明,网格细胞的集合比绝对位置更可靠地编码相对位置。