Suppr超能文献

基于基因突变和表达预测肝细胞癌的新型治疗药物

Predict New Therapeutic Drugs for Hepatocellular Carcinoma Based on Gene Mutation and Expression.

作者信息

Yu Liang, Xu Fengdan, Gao Lin

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, China.

出版信息

Front Bioeng Biotechnol. 2020 Jan 28;8:8. doi: 10.3389/fbioe.2020.00008. eCollection 2020.

Abstract

Hepatocellular carcinoma (HCC) is the fourth most common primary liver tumor and is an important medical problem worldwide. However, the use of current therapies for HCC is no possible to be cured, and despite numerous attempts and clinical trials, there are not so many approved targeted treatments for HCC. So, it is necessary to identify additional treatment strategies to prevent the growth of HCC tumors. We are looking for a systematic drug repositioning bioinformatics method to identify new drug candidates for the treatment of HCC, which considers not only aberrant genomic information, but also the changes of transcriptional landscapes. First, we screen the collection of HCC feature genes, i.e., kernel genes, which frequently mutated in most samples of HCC based on human mutation data. Then, the gene expression data of HCC in TCGA are combined to classify the kernel genes of HCC. Finally, the therapeutic score () of each drug is calculated based on the kolmogorov-smirnov statistical method. Using this strategy, we identify five drugs that associated with HCC, including three drugs that could treat HCC and two drugs that might have side-effect on HCC. In addition, we also make Connectivity Map (CMap) profiles similarity analysis and KEGG enrichment analysis on drug targets. All these findings suggest that our approach is effective for accurate predicting novel therapeutic options for HCC and easily to be extended to other tumors.

摘要

肝细胞癌(HCC)是第四大常见的原发性肝肿瘤,是一个全球性的重要医学问题。然而,使用目前的疗法无法治愈HCC,尽管进行了大量尝试和临床试验,但获批用于治疗HCC的靶向治疗药物并不多。因此,有必要确定额外的治疗策略来阻止HCC肿瘤的生长。我们正在寻找一种系统性的药物重新定位生物信息学方法,以识别用于治疗HCC的新候选药物,该方法不仅考虑异常的基因组信息,还考虑转录图谱的变化。首先,我们基于人类突变数据筛选HCC特征基因集,即核心基因,这些基因在大多数HCC样本中频繁发生突变。然后,结合TCGA中HCC的基因表达数据对HCC的核心基因进行分类。最后,基于柯尔莫哥洛夫-斯米尔诺夫统计方法计算每种药物的治疗评分()。使用这种策略,我们识别出五种与HCC相关的药物,其中三种药物可用于治疗HCC,两种药物可能对HCC有副作用。此外,我们还对药物靶点进行了连接图谱(CMap)谱相似性分析和KEGG富集分析。所有这些发现表明,我们的方法对于准确预测HCC的新型治疗方案是有效的,并且易于扩展到其他肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c16f/6997129/678e60b65b14/fbioe-08-00008-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验