Suppr超能文献

利用机器学习辅助分子诊断预测铜绿假单胞菌的抗菌药物耐药性

Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics.

作者信息

Khaledi Ariane, Weimann Aaron, Schniederjans Monika, Asgari Ehsaneddin, Kuo Tzu-Hao, Oliver Antonio, Cabot Gabriel, Kola Axel, Gastmeier Petra, Hogardt Michael, Jonas Daniel, Mofrad Mohammad Rk, Bremges Andreas, McHardy Alice C, Häussler Susanne

机构信息

Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.

Molecular Bacteriology Group, TWINCORE-Centre for Experimental and Clinical Infection Research, Hannover, Germany.

出版信息

EMBO Mol Med. 2020 Mar 6;12(3):e10264. doi: 10.15252/emmm.201910264. Epub 2020 Feb 12.

Abstract

Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8-0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections.

摘要

抗生素耐药性导致治疗选择有限,这凸显了优化当前诊断方法的必要性。在某些细菌物种中,基于其基因组序列可以明确预测抗菌药物耐药性。在本研究中,我们对414株耐多药临床铜绿假单胞菌分离株的基因组和转录组进行了测序。通过利用基因的存在与否、序列变异和表达谱等信息训练机器学习分类器,我们生成了预测模型,并鉴定了对四种常用抗菌药物耐药的生物标志物。单独或组合使用这些数据类型可产生高(0.8 - 0.9)或非常高(> 0.9)的敏感性和预测值。对于除环丙沙星以外的所有药物,基因表达信息均改善了诊断性能。我们的研究结果为开发一种基于基因组和转录组标记可靠预测抗菌药物敏感性的分子耐药性分析工具铺平了道路。在常规微生物诊断中实施分子药敏试验系统有望提供有关细菌病原体抗生素耐药谱的更早、更详细的信息,从而可能改变医生治疗细菌感染的方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdbf/7059009/facdeb5437ce/EMMM-12-e10264-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验