Guo Qiang, Mei Sen, Xie Chong, Mi Hao, Jiang Yang, Zhang Shi-Ding, Tan Tian-Wei, Fan Li-Hai
Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
Biotechnol Bioeng. 2020 Jun;117(6):1738-1746. doi: 10.1002/bit.27306. Epub 2020 Feb 20.
In the initial step of sugar metabolism, sugar-specific transporters play a decisive role in the passage of sugars through plasma membranes into cytoplasm. The SecY complex (SecYEG) in bacteria forms a membrane channel responsible for protein translocation. The present work shows that permeabilized SecY channels can be used as nonspecific sugar transporters in Escherichia coli. SecY with the plug domain deleted allowed the passage of glucose, fructose, mannose, xylose, and arabinose, and, with additional pore-ring mutations, facilitated lactose transport, indicating that sugar passage via permeabilized SecY was independent of sugar stereospecificity. The engineered E. coli showed rapid growth on a wide spectrum of monosaccharides and benefited from the elimination of transport saturation, improvement in sugar tolerance, reduction in competitive inhibition, and prevention of carbon catabolite repression, which are usually encountered with native sugar uptake systems. The SecY channel is widespread in prokaryotes, so other bacteria may also be engineered to utilize this system for sugar uptake. The SecY channel thus provides a unique sugar passageway for future development of robust cell factories for biotechnological applications.
在糖代谢的初始步骤中,糖特异性转运蛋白在糖通过质膜进入细胞质的过程中起决定性作用。细菌中的SecY复合物(SecYEG)形成负责蛋白质转运的膜通道。目前的研究表明,通透的SecY通道可作为大肠杆菌中的非特异性糖转运蛋白。缺失塞子结构域的SecY允许葡萄糖、果糖、甘露糖、木糖和阿拉伯糖通过,并且通过额外的孔环突变促进了乳糖转运,这表明通过通透的SecY的糖转运与糖的立体特异性无关。经过工程改造的大肠杆菌在多种单糖上能快速生长,并受益于运输饱和的消除、糖耐受性的提高、竞争性抑制的降低以及碳分解代谢物阻遏的预防,而这些通常是天然糖摄取系统所面临的问题。SecY通道在原核生物中广泛存在,因此其他细菌也可以通过工程改造利用该系统进行糖摄取。因此,SecY通道为未来开发用于生物技术应用的强大细胞工厂提供了独特的糖通道。