Suppr超能文献

格兰杰因果分析在阿尔茨海默病和轻度认知障碍定向功能连接中的应用

Application of Granger Causality Analysis of the Directed Functional Connection in Alzheimer's Disease and Mild Cognitive Impairment.

作者信息

Wang Mei, Liao Zhengluan, Mao Dewang, Zhang Qi, Li Yumei, Yu Enyan, Ding Zhongxiang

机构信息

Zhejiang Chinese Medical University.

Department of Psychiatry, Zhejiang Provincial People's Hospital.

出版信息

J Vis Exp. 2017 Aug 7(126):56015. doi: 10.3791/56015.

Abstract

Impaired functional connectivity in the Default Mode Network (DMN) may be involved in the progression of Alzheimer's Disease (AD). The Posterior Cingulate Cortex (PCC) is a potential imaging marker for monitoring the progression of AD. Previous studies did not focus on the functional connectivity between the PCC and nodes in regions outside the DMN, but our study is an effort to explore these overlooked functional connections. For collecting data, we used functional Magnetic Resonance Imaging (fMRI) and Granger Causality Analysis (GCA). fMRI provides a non-invasive method for studying the dynamic interactions between the different brain regions. GCA is a statistical hypothesis test for determining whether one-time series is useful in forecasting another. In simple terms, it is judged by comparing the "Known all the information on the last moment, the distribution of the probability of X at this time" and the "Known all the information on the last moment except Y, the distribution of the probability of X at this time", to determine whether there is a causal relationship between Y and X. This definition is based on the complete information source and stationary chronological sequence. The main step of this analysis is to use X and Y to establish the regression equation and draw a causal relationship by a hypothetical test. Since GCA can measure causal effects, we used it to investigate the anisotropy of the functional connectivity and explore the hub function of the PCC. Here, we screened 116 participants for MRI scanning, and after preprocessing the data obtained from neuroimaging, we used GCA to derive the causal relationship of each node. Finally, we concluded that the directed connection is significantly different between the Mild Cognitive Impairment (MCI) and AD groups, both from the PCC to the whole brain and from the whole brain to the PCC.

摘要

默认模式网络(DMN)中功能连接受损可能与阿尔茨海默病(AD)的进展有关。后扣带回皮质(PCC)是监测AD进展的潜在影像标志物。以往研究未关注PCC与DMN区域外节点之间的功能连接,但我们的研究致力于探索这些被忽视的功能连接。为收集数据,我们使用了功能磁共振成像(fMRI)和格兰杰因果分析(GCA)。fMRI为研究不同脑区之间的动态相互作用提供了一种非侵入性方法。GCA是一种统计假设检验,用于确定一个时间序列是否有助于预测另一个时间序列。简单来说,它是通过比较“已知上一时刻的所有信息,此时X的概率分布”和“已知上一时刻除Y之外的所有信息,此时X的概率分布”来判断Y与X之间是否存在因果关系。这一定义基于完整的信息源和平稳的时间序列。该分析的主要步骤是用X和Y建立回归方程,并通过假设检验得出因果关系。由于GCA可以测量因果效应,我们用它来研究功能连接的各向异性并探索PCC的枢纽功能。在此,我们筛选了116名参与者进行MRI扫描,对从神经影像学获得的数据进行预处理后,我们使用GCA得出每个节点的因果关系。最后,我们得出结论,轻度认知障碍(MCI)组和AD组之间的定向连接存在显著差异,无论是从PCC到全脑还是从全脑到PCC。

相似文献

本文引用的文献

6
Wiener-Granger causality: a well established methodology.维纳-格兰杰因果关系:一种成熟的方法。
Neuroimage. 2011 Sep 15;58(2):323-9. doi: 10.1016/j.neuroimage.2010.02.059. Epub 2010 Mar 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验