IMDEA Materials Institute, Calle Eric Kandel 2, 28906, Getafe, Spain.
Department of Biology, Friedrich-Alexander-University of Erlangen-Nuremberg, Staudtstraße 5, 91058, Erlangen, Germany.
Nat Commun. 2020 Feb 13;11(1):879. doi: 10.1038/s41467-020-14559-8.
Bio-hybrid light-emitting diodes (Bio-HLEDs) based on color down-converting filters with fluorescent proteins (FPs) have achieved moderate efficiencies (50 lm/W) and stabilities (300 h) due to both thermal- and photo-degradation. Here, we present a significant enhancement in efficiency (~130 lm/W) and stability (>150 days) using a zero-thermal-quenching bio-phosphor design. This is achieved shielding the FP surface with a hydrophilic polymer allowing their homogenous integration into the network of a light-guiding and hydrophobic host polymer. We rationalize how the control of the mechanical and optical features of this bio-phosphor is paramount towards highly stable and efficient Bio-HLEDs, regardless of the operation conditions. This is validated by the relationships between the stiffness of the FP-polymer phosphor and the maximum temperature reached under device operation as well as the transmittance of the filters and device efficiency.
基于带有荧光蛋白 (FP) 的颜色下转换滤光片的生物混合发光二极管 (Bio-HLED) 由于热和光降解,其效率 (50 lm/W) 和稳定性 (300 h) 仅达到中等水平。在这里,我们使用零热猝灭生物荧光粉设计,显著提高了效率 (~130 lm/W) 和稳定性 (>150 天)。这是通过用亲水性聚合物屏蔽 FP 表面来实现的,从而允许它们均匀地集成到光导和疏水性主体聚合物的网络中。我们合理地解释了如何控制这种生物荧光粉的机械和光学特性对于高度稳定和高效的 Bio-HLED 至关重要,而与操作条件无关。这通过 FP-聚合物荧光粉的刚度与器件操作下达到的最高温度以及滤波器的透光率和器件效率之间的关系得到了验证。