Suppr超能文献

可扩展全无机卤化物钙钛矿阵列的两步图案化

Two-Step Patterning of Scalable All-Inorganic Halide Perovskite Arrays.

作者信息

Lin Chung-Kuan, Zhao Qiuchen, Zhang Ye, Cestellos-Blanco Stefano, Kong Qiao, Lai Minliang, Kang Joohoon, Yang Peidong

机构信息

Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

ACS Nano. 2020 Mar 24;14(3):3500-3508. doi: 10.1021/acsnano.9b09685. Epub 2020 Feb 20.

Abstract

Halide perovskites have many important optoelectronic properties, including high emission efficiency, high absorption coefficients, color purity, and tunable emission wavelength, which makes these materials promising for optoelectronic applications. However, the inability to precisely control large-scale patterned growth of halide perovskites limits their potential toward various device applications. Here, we report a patterning method for the growth of a cesium lead halide perovskite single crystal array. Our approach consists of two steps: (1) cesium halide salt arrays patterning and (2) chemical vapor transport process to convert salt arrays into single crystal perovskite arrays. Characterizations including energy-dispersive X-ray spectroscopy and photoluminescence have been employed to confirm the chemical compositions and the optical properties of the as-synthesized perovskite arrays. This patterning method enables the patterning of single crystal cesium lead halide perovskite arrays with tunable spacing (from 2 to 20 μm) and crystal size (from 200 nm to 1.2 μm) in high production yield (almost every pixel in the array is successfully grown with converted perovskite crystals). Our large-scale patterning method renders a platform for the study of fundamental properties and opportunities for perovskite-based optoelectronic applications.

摘要

卤化物钙钛矿具有许多重要的光电特性,包括高发射效率、高吸收系数、色纯度和可调节的发射波长,这使得这些材料在光电应用方面很有前景。然而,无法精确控制卤化物钙钛矿的大规模图案化生长限制了它们在各种器件应用中的潜力。在此,我们报告了一种用于生长卤化铯铅钙钛矿单晶阵列的图案化方法。我们的方法包括两个步骤:(1)卤化铯盐阵列图案化和(2)化学气相传输过程,将盐阵列转化为单晶钙钛矿阵列。已采用包括能量色散X射线光谱和光致发光在内的表征方法来确认合成的钙钛矿阵列的化学成分和光学性质。这种图案化方法能够以高产量(阵列中的几乎每个像素都成功生长出转化的钙钛矿晶体)对间距可调(2至20μm)和晶体尺寸可调(200nm至1.2μm)的卤化铯铅钙钛矿单晶阵列进行图案化。我们的大规模图案化方法为研究钙钛矿基光电应用的基本特性和机遇提供了一个平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验