Smith N M, Lenhard J R, Boissonneault K R, Landersdorfer C B, Bulitta J B, Holden P N, Forrest A, Nation R L, Li J, Tsuji B T
Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA; New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA.
California Northstate University, College of Pharmacy, Elk Grove, CA, USA.
Clin Microbiol Infect. 2020 Sep;26(9):1207-1213. doi: 10.1016/j.cmi.2020.02.004. Epub 2020 Feb 12.
Increased rates of carbapenem-resistant strains of Acinetobacter baumannii have forced clinicians to rely upon last-line agents, such as the polymyxins, or empirical, unoptimized combination therapy. Therefore, the objectives of this study were: (a) to evaluate the in vitro pharmacodynamics of meropenem and polymyxin B (PMB) combinations against A. baumannii; (b) to utilize a mechanism-based mathematical model to quantify bacterial killing; and (c) to develop a genetic algorithm (GA) to define optimal dosing strategies for meropenem and PMB.
A. baumannii (N16870; MIC = 16 mg/L, MIC = 0.5 mg/L) was studied in the hollow-fibre infection model (initial inoculum 10 cfu/mL) over 14 days against meropenem and PMB combinations. A mechanism-based model of the data and population pharmacokinetics of each drug were used to develop a GA to define the optimal regimen parameters.
Monotherapies resulted in regrowth to ~10 cfu/mL by 24 h, while combination regimens employing high-intensity PMB exposure achieved complete bacterial eradication (0 cfu/mL) by 336 h. The mechanism-based model demonstrated an SC (PMB concentration for 50% of maximum synergy on meropenem killing) of 0.0927 mg/L for PMB-susceptible subpopulations versus 3.40 mg/L for PMB-resistant subpopulations. The GA had a preference for meropenem regimens that improved the %T > MIC via longer infusion times and shorter dosing intervals. The GA predicted that treating 90% of simulated subjects harbouring a 10 cfu/mL starting inoculum to a point of 10 cfu/mL would require a regimen of meropenem 19.6 g/day 2 h prolonged infusion (2 hPI) q5h + PMB 5.17 mg/kg/day 2 hPI q6h (where the 0 h meropenem and PMB doses should be 'loaded' with 80.5% and 42.2% of the daily dose, respectively).
This study provides a methodology leveraging in vitro experimental data, a mathematical pharmacodynamic model, and population pharmacokinetics provide a possible avenue to optimize treatment regimens beyond the use of the 'traditional' indices of antibiotic action.
鲍曼不动杆菌对碳青霉烯类耐药菌株的比例增加,迫使临床医生依赖多粘菌素等最后一线药物,或经验性、未优化的联合治疗。因此,本研究的目的是:(a)评估美罗培南与多粘菌素B(PMB)联合用药对鲍曼不动杆菌的体外药效学;(b)利用基于机制的数学模型量化细菌杀灭情况;(c)开发一种遗传算法(GA)来确定美罗培南和PMB的最佳给药策略。
在中空纤维感染模型(初始接种量为10 cfu/mL)中,对鲍曼不动杆菌(N16870;美罗培南MIC = 16 mg/L,PMB MIC = 0.5 mg/L)进行了为期14天的美罗培南与PMB联合用药研究。利用基于机制的数据模型和每种药物的群体药代动力学来开发GA,以确定最佳治疗方案参数。
单一疗法在24小时内导致细菌重新生长至~10 cfu/mL,而采用高强度PMB暴露的联合治疗方案在336小时时实现了细菌的完全清除(0 cfu/mL)。基于机制的模型显示,对于对PMB敏感的亚群,PMB的协同系数(SC,即美罗培南杀菌作用达到最大协同作用50%时的PMB浓度)为0.0927 mg/L,而对PMB耐药的亚群为3.40 mg/L。GA倾向于通过延长输注时间和缩短给药间隔来提高%T > MIC的美罗培南治疗方案。GA预测,对于初始接种量为10 cfu/mL的90%模拟受试者,将其治疗至细菌载量为10 cfu/mL,需要采用美罗培南19.6 g/天、2小时延长输注(2 hPI)、q5h + PMB 5.17 mg/kg/天、2小时延长输注、q6h的治疗方案(其中美罗培南和PMB的0小时剂量应分别“负荷”每日剂量的80.5%和42.2%)。
本研究提供了一种利用体外实验数据、数学药效学模型和群体药代动力学的方法,为优化治疗方案提供了一条超越使用“传统”抗生素作用指标的可能途径。