Suppr超能文献

用于神经调节研究的低成本可植入无线传感器平台。

Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research.

作者信息

McAdams Ian, Kenyon Hannah, Bourbeau Dennis, Damaser Margot S, Zorman Christian, Majerus Steve J A

机构信息

Dept. of Biomedical Engineering, Lerner Research Institute.

Dept. of Electrical Engineering and Computer Science Case Western Reserve University Cleveland, Ohio, USA.

出版信息

IEEE Biomed Circuits Syst Conf. 2018 Oct;2018. doi: 10.1109/BIOCAS.2018.8584729. Epub 2018 Dec 24.

Abstract

The role of peripheral nerves in regulating major organ function in health and disease is not well understood. Elucidating the relationships between biomarkers and neural activity during conditions free form anesthesia is essential to advancing future investigations of autonomic organ control and improving precision for neuromodulation treatment approaches. Here we present a simple, customizable, off-the-shelf component sensor platform to meet research needs for studying different organs under conscious, free movement. The platform consists of a small, rechargeable coin-cell battery, an energy-harvesting IC, a low-power microcontroller, a low-power pressure transducer, customizable number of electrodes with a common anode, inductive recharge input, and OOK inductive transmission. A case study demonstrating a bladder implant for long-term monitoring is presented, utilizing a novel, non-hermetic encapsulation approach. The customized platform uses two sleep modes to minimize battery loading, exhibiting a maximum time-averaged current draw of 125 micro-amps during sensing and transmission, with a quiescent current draw of 95 nano-amps into the microcontroller.

摘要

外周神经在健康和疾病状态下调节主要器官功能的作用尚未得到充分理解。阐明在无麻醉状态下生物标志物与神经活动之间的关系对于推进未来自主器官控制的研究以及提高神经调节治疗方法的精准度至关重要。在此,我们展示了一个简单、可定制的现成组件传感器平台,以满足在清醒、自由活动状态下研究不同器官的研究需求。该平台由一个小型可充电纽扣电池、一个能量收集集成电路、一个低功耗微控制器、一个低功耗压力传感器、可定制数量的具有公共阳极的电极、感应充电输入和开关键控感应传输组成。本文介绍了一个利用新型非密封封装方法的膀胱植入物进行长期监测的案例研究。定制平台使用两种睡眠模式来最小化电池负载,在传感和传输过程中表现出的最大时间平均电流消耗为125微安,微控制器的静态电流消耗为95纳安。

相似文献

1
Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research.用于神经调节研究的低成本可植入无线传感器平台。
IEEE Biomed Circuits Syst Conf. 2018 Oct;2018. doi: 10.1109/BIOCAS.2018.8584729. Epub 2018 Dec 24.
3
Wireless Implantable Pressure Monitor for Conditional Bladder Neuromodulation.用于条件性膀胱神经调节的无线植入式压力监测器
IEEE Biomed Circuits Syst Conf. 2015 Oct;2015. doi: 10.1109/biocas.2015.7348337. Epub 2015 Dec 7.
7
Energy scavenging for long-term deployable wireless sensor networks.面向长期可部署无线传感器网络的能量收集
Talanta. 2008 May 15;75(3):613-23. doi: 10.1016/j.talanta.2007.12.021. Epub 2007 Dec 26.

引用本文的文献

2
Wireless and Catheter-Free Bladder Pressure and Volume Sensor.无线无导管膀胱压力和容积传感器
IEEE Sens J. 2024 Mar 15;24(6):7308-7316. doi: 10.1109/jsen.2023.3267749. Epub 2023 Apr 20.
4
A Flexible Implant for Multi-Day Monitoring of Colon Segment Activity.用于结肠段活动多日监测的柔性植入物。
IEEE Trans Biomed Circuits Syst. 2023 Oct;17(5):941-951. doi: 10.1109/TBCAS.2023.3289768. Epub 2023 Nov 21.

本文引用的文献

1
Is submucosal bladder pressure monitoring feasible?膀胱黏膜下压力监测是否可行?
Proc Inst Mech Eng H. 2019 Jan;233(1):100-113. doi: 10.1177/0954411918754925. Epub 2018 Jan 29.
2
The State of the NIH BRAIN Initiative.NIH BRAIN 计划的现状。
J Neurosci. 2018 Jul 18;38(29):6427-6438. doi: 10.1523/JNEUROSCI.3174-17.2018. Epub 2018 Jun 19.
4
Suburothelial Bladder Contraction Detection with Implanted Pressure Sensor.植入式压力传感器检测膀胱黏膜下层收缩
PLoS One. 2017 Jan 6;12(1):e0168375. doi: 10.1371/journal.pone.0168375. eCollection 2017.
6
Peripheral neuromodulation: a review.外周神经调节:综述
Curr Pain Headache Rep. 2014 May;18(5):412. doi: 10.1007/s11916-014-0412-9.
7
Detecting the onset of urinary bladder contractions using an implantable pressure sensor.使用植入式压力传感器检测膀胱收缩的发作。
IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):700-8. doi: 10.1109/TNSRE.2011.2171368. Epub 2011 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验