Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.
Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
Biotechnol Appl Biochem. 2020 Jan;67(1):7-21. doi: 10.1002/bab.1901. Epub 2020 Feb 24.
Genetic perturbation systems are of great interest to redirect metabolic fluxes for value-added production, as well as genetic screening for the development of new drugs, or to identify new targets for biotechnological applications. Here, we review CRISPR interference (CRISPRi), a method for gene expression using a catalytically inactive version of the CRISPR-associated protein 9 (dCas9) of the widely applied CRISPR-Cas9 genome editing system. In combination with the appropriate sgRNA, dCas9 binds to specific DNA sequences without causing double-stranded DNA breakage but interfering with transcription initiation or elongation. Besides manifold uses to interrogate the physiology of a bacterial cell, CRISPRi is used in applications for metabolic engineering and strain development in industrial biotechnology. Albeit in its infancy, CRISPRi has already delivered the first success stories; however, we also analyze limitations of the CRISPRi system and give future perspectives.
遗传扰动系统对于重新定向代谢通量以进行增值生产非常有意义,也可用于遗传筛选以开发新药,或鉴定用于生物技术应用的新靶点。在这里,我们回顾了 CRISPR 干扰 (CRISPRi),这是一种使用广泛应用的 CRISPR-Cas9 基因组编辑系统的 CRISPR 相关蛋白 9 (dCas9) 的无催化活性版本进行基因表达的方法。与适当的 sgRNA 结合后,dCas9 结合到特定的 DNA 序列上,不会导致双链 DNA 断裂,但会干扰转录起始或延伸。除了可用于探究细菌细胞生理学的多种用途外,CRISPRi 还用于代谢工程和工业生物技术中的菌株开发。尽管还处于起步阶段,但 CRISPRi 已经取得了第一个成功案例;然而,我们也分析了 CRISPRi 系统的局限性,并给出了未来的展望。