Suppr超能文献

tRNA 基因处复制叉暂停的决定因素。

Determinants of Replication-Fork Pausing at tRNA Genes in .

机构信息

Department of Biology, New York University, New York 10003.

Department of Biology, New York University, New York 10003

出版信息

Genetics. 2020 Apr;214(4):825-838. doi: 10.1534/genetics.120.303092. Epub 2020 Feb 18.

Abstract

Transfer RNA (tRNA) genes are widely studied sites of replication-fork pausing and genome instability in the budding yeast tRNAs are extremely highly transcribed and serve as constitutive condensin binding sites. tRNA transcription by RNA polymerase III has previously been identified as stimulating replication-fork pausing at tRNA genes, but the nature of the block to replication has not been incontrovertibly demonstrated. Here, we describe a systematic, genome-wide analysis of the contributions of candidates to replication-fork progression at tDNAs in yeast: transcription factor binding, transcription, topoisomerase activity, condensin-mediated clustering, and Rad18-dependent DNA repair. We show that an asymmetric block to replication is maintained even when tRNA transcription is abolished by depletion of one or more subunits of RNA polymerase III. By contrast, analogous depletion of the essential transcription factor TFIIIB removes the obstacle to replication. Therefore, our data suggest that the RNA polymerase III transcription complex itself represents an asymmetric obstacle to replication even in the absence of RNA synthesis. We additionally demonstrate that replication-fork progression past tRNA genes is unaffected by the global depletion of condensin from the nucleus, and can be stimulated by the removal of topoisomerases or Rad18-dependent DNA repair pathways.

摘要

转移 RNA(tRNA)基因是研究广泛的复制叉暂停和 budding 酵母基因组不稳定性的位点tRNA 转录水平极高,并且作为组成型凝聚素结合位点。以前已经确定 RNA 聚合酶 III 对 tRNA 基因的转录会刺激复制叉暂停,但复制的阻断性质尚未得到无可争议的证明。在这里,我们描述了对酵母中 tDNAs 复制叉进展的候选因素的系统,全基因组分析:转录因子结合、转录、拓扑异构酶活性、凝聚素介导的聚类和 Rad18 依赖性 DNA 修复。我们表明,即使通过耗尽一个或多个 RNA 聚合酶 III 亚基来消除 tRNA 转录,复制的不对称阻断仍得以维持。相比之下,类似地耗尽必需转录因子 TFIIIB 会消除复制的障碍。因此,我们的数据表明,即使没有 RNA 合成,RNA 聚合酶 III 转录复合物本身就是复制的不对称障碍。我们还证明,即使从核中全局耗尽凝聚素,复制叉在 tRNA 基因上的前进也不受影响,并且可以通过去除拓扑异构酶或 Rad18 依赖性 DNA 修复途径来刺激。

相似文献

1
Determinants of Replication-Fork Pausing at tRNA Genes in .tRNA 基因处复制叉暂停的决定因素。
Genetics. 2020 Apr;214(4):825-838. doi: 10.1534/genetics.120.303092. Epub 2020 Feb 18.
3
DNA replication fork pause sites dependent on transcription.依赖转录的DNA复制叉暂停位点
Science. 1996 May 17;272(5264):1030-3. doi: 10.1126/science.272.5264.1030.
5
Fork pausing complex engages topoisomerases at the replisome.叉暂停复合物在复制体处与拓扑异构酶结合。
Genes Dev. 2020 Jan 1;34(1-2):87-98. doi: 10.1101/gad.331868.119. Epub 2019 Dec 5.
6
Replication stress checkpoint signaling controls tRNA gene transcription.复制压力检查点信号控制 tRNA 基因转录。
Nat Struct Mol Biol. 2010 Aug;17(8):976-81. doi: 10.1038/nsmb.1857. Epub 2010 Jul 18.

引用本文的文献

1
Regulation of replication timing in Saccharomyces cerevisiae.酿酒酵母中复制时间的调控。
PLoS Comput Biol. 2025 Jun 2;21(6):e1013066. doi: 10.1371/journal.pcbi.1013066. eCollection 2025 Jun.
6
Transcription-Replication Conflicts as a Source of Genome Instability.转录-复制冲突作为基因组不稳定性的一个来源。
Annu Rev Genet. 2023 Nov 27;57:157-179. doi: 10.1146/annurev-genet-080320-031523. Epub 2023 Aug 8.
8
Looping out of control: R-loops in transcription-replication conflict.失控的循环:转录-复制冲突中的 R 环。
Chromosoma. 2024 Jan;133(1):37-56. doi: 10.1007/s00412-023-00804-8. Epub 2023 Jul 7.

本文引用的文献

1
Fork pausing complex engages topoisomerases at the replisome.叉暂停复合物在复制体处与拓扑异构酶结合。
Genes Dev. 2020 Jan 1;34(1-2):87-98. doi: 10.1101/gad.331868.119. Epub 2019 Dec 5.
6
Transcription shapes DNA replication initiation and termination in human cells.转录重塑人类细胞中的 DNA 复制起始和终止。
Nat Struct Mol Biol. 2019 Jan;26(1):67-77. doi: 10.1038/s41594-018-0171-0. Epub 2018 Dec 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验