Department of Healthcare Information Technology, Inje University, Inje-ro, Gimhae-si, 50834, Republic of Korea.
Sci Rep. 2023 Feb 20;13(1):2937. doi: 10.1038/s41598-023-30208-8.
This study aimed to develop a bimodal convolutional neural network (CNN) by co-training grayscale images and scalograms of ECG for cardiovascular disease classification. The bimodal CNN model was developed using a 12-lead ECG database collected from Chapman University and Shaoxing People's Hospital. The preprocessed database contains 10,588 ECG data and 11 heart rhythms labeled by a specialist physician. The preprocessed one-dimensional ECG signals were converted into two-dimensional grayscale images and scalograms, which are fed simultaneously to the bimodal CNN model as dual input images. The proposed model aims to improve the performance of CVDs classification by making use of ECG grayscale images and scalograms. The bimodal CNN model consists of two identical Inception-v3 backbone models, which were pre-trained on the ImageNet database. The proposed model was fine-tuned with 6780 dual-input images, validated with 1694 dual-input images, and tested on 2114 dual-input images. The bimodal CNN model using two identical Inception-v3 backbones achieved best AUC (0.992), accuracy (95.08%), sensitivity (0.942), precision (0.946) and F1-score (0.944) in lead II. Ensemble model of all leads obtained AUC (0.994), accuracy (95.74%), sensitivity (0.950), precision (0.953), and F1-score (0.952). The bimodal CNN model showed better diagnostic performance than logistic regression, XGBoost, LSTM, single CNN model training with grayscale images alone or with scalograms alone. The proposed bimodal CNN model would be of great help in diagnosing cardiovascular diseases.
本研究旨在开发一种双模态卷积神经网络(CNN),通过对心电图的灰度图像和谱图进行联合训练,实现心血管疾病分类。该双模态 CNN 模型是使用查普曼大学和绍兴人民医院采集的 12 导联心电图数据库开发的。预处理后的数据库包含 10588 份心电图数据和 11 种由专家医生标记的心律。预处理后的一维心电图信号被转换为二维灰度图像和谱图,作为双输入图像同时输入到双模态 CNN 模型中。所提出的模型旨在通过利用心电图灰度图像和谱图来提高 CVD 分类的性能。双模态 CNN 模型由两个相同的 Inception-v3 骨干模型组成,这些模型是在 ImageNet 数据库上预训练的。该模型使用 6780 对双输入图像进行微调,使用 1694 对双输入图像进行验证,并使用 2114 对双输入图像进行测试。使用两个相同的 Inception-v3 骨干的双模态 CNN 模型在导联 II 中达到了最佳 AUC(0.992)、准确率(95.08%)、敏感度(0.942)、精度(0.946)和 F1 分数(0.944)。所有导联的集成模型获得了 AUC(0.994)、准确率(95.74%)、敏感度(0.950)、精度(0.953)和 F1 分数(0.952)。与逻辑回归、XGBoost、LSTM、仅使用灰度图像或仅使用谱图进行单 CNN 模型训练相比,双模态 CNN 模型显示出更好的诊断性能。所提出的双模态 CNN 模型将有助于诊断心血管疾病。