Suppr超能文献

健康老龄化的影像:肌肉放射密度测定与生活方式因素预测糖尿病和高血压。

Healthy Aging Within an Image: Using Muscle Radiodensitometry and Lifestyle Factors to Predict Diabetes and Hypertension.

出版信息

IEEE J Biomed Health Inform. 2021 Jun;25(6):2103-2112. doi: 10.1109/JBHI.2020.3044158. Epub 2021 Jun 3.

Abstract

The strong age dependency of many deleterious health outcomes likely reflects the cumulative effects from a variety of risk and protective factors that occur over one's life course. This notion has become increasingly explored in the etiology of chronic disease and associated comorbidities in aging. Our recent work has shown the robust classification of individuals at risk for cardiovascular pathophysiology using CT-based soft tissue radiodensity parameters obtained from nonlinear trimodal regression analysis (NTRA). Past and present lifestyle influences the incidence of comorbidities like hypertension (HTN), diabetes (DM) and cardiac diseases. 2,943 elderly subjects from the AGES-Reykjavik study were sorted into a three-level binary-tree structure defined by: 1) lifestyle factors (smoking and self-reported physical activity level), 2) comorbid HTN or DM, and 3) cardiac pathophysiology. NTRA parameters were extracted from mid-thigh CT cross-sections to quantify radiodensitometric changes in three tissue types: lean muscle, fat, and loose-connective tissue. Between-group differences were assessed at each binary-tree level, which were then used in tree-based machine learning (ML) models to classify subjects with DM or HTN. Classification scores for detecting HTN or DM based on lifestyle factors were excellent (AUCROC: 0.978 and 0.990, respectively). Finally, tissue importance analysis underlined the comparatively-high significance of connective tissue parameters in ML classification, while predictive models of DM onset from five-year longitudinal data gave a classification accuracy of 94.9%. Altogether, this work serves as an important milestone toward the construction of predictive tools for assessing the impact of lifestyle factors and healthy aging based on a single image.

摘要

许多有害健康结果的强烈年龄依赖性可能反映了在一个人的生命过程中发生的各种风险和保护因素的累积效应。这一概念在慢性疾病的病因学及其与衰老相关的合并症中得到了越来越多的探索。我们最近的工作表明,使用基于 CT 的软组织放射密度参数,通过非线性三模态回归分析(NTRA)可以对心血管病理生理学风险个体进行稳健分类。过去和现在的生活方式影响了高血压(HTN)、糖尿病(DM)和心脏病等合并症的发生率。AGEs-Reykjavik 研究中的 2943 名老年受试者按照以下三级二叉树结构进行分类:1)生活方式因素(吸烟和自我报告的体力活动水平),2)合并 HTN 或 DM,3)心脏病理生理学。从中大腿 CT 横断面提取 NTRA 参数,以量化三种组织类型的放射密度变化:肌肉、脂肪和疏松结缔组织。在每个二叉树级别评估组间差异,然后将这些差异用于基于树的机器学习(ML)模型中,以分类患有 DM 或 HTN 的受试者。基于生活方式因素检测 HTN 或 DM 的分类评分非常出色(AUCROC:分别为 0.978 和 0.990)。最后,组织重要性分析强调了结缔组织参数在 ML 分类中的相对重要性,而基于五年纵向数据的 DM 发病预测模型的分类准确率为 94.9%。总之,这项工作是朝着构建基于单个图像评估生活方式因素和健康衰老影响的预测工具的重要里程碑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验