Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States.
Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States.
Environ Sci Technol. 2023 Aug 22;57(33):12291-12301. doi: 10.1021/acs.est.3c02792. Epub 2023 Aug 11.
Failure of animal models to predict hepatotoxicity in humans has created a push to develop biological pathway-based alternatives, such as those that use in vitro assays. Public screening programs (e.g., ToxCast/Tox21 programs) have tested thousands of chemicals using in vitro high-throughput screening (HTS) assays. Developing pathway-based models for simple biological pathways, such as endocrine disruption, has proven successful, but development remains a challenge for complex toxicities like hepatotoxicity, due to the many biological events involved. To this goal, we aimed to develop a computational strategy for developing pathway-based models for complex toxicities. Using a database of 2171 chemicals with human hepatotoxicity classifications, we identified 157 out of 1600+ ToxCast/Tox21 HTS assays to be associated with human hepatotoxicity. Then, a computational framework was used to group these assays by biological target or mechanisms into 52 key event (KE) models of hepatotoxicity. KE model output is a KE score summarizing chemical potency against a hepatotoxicity-relevant biological target or mechanism. Grouping hepatotoxic chemicals based on the chemical structure revealed chemical classes with high KE scores plausibly informing their hepatotoxicity mechanisms. Using KE scores and supervised learning to predict in vivo hepatotoxicity, including toxicokinetic information, improved the predictive performance. This new approach can be a universal computational toxicology strategy for various chemical toxicity evaluations.
动物模型未能预测人类的肝毒性,这促使人们开发基于生物学途径的替代方法,例如使用体外测定法。公共筛选计划(例如 ToxCast/Tox21 计划)已经使用体外高通量筛选(HTS)测定法测试了数千种化学物质。为简单的生物学途径(如内分泌干扰)开发基于途径的模型已被证明是成功的,但由于涉及许多生物学事件,对于像肝毒性这样的复杂毒性,模型的开发仍然是一个挑战。为了实现这一目标,我们旨在开发一种用于复杂毒性的基于途径的模型的计算策略。我们使用了一个包含 2171 种具有人类肝毒性分类的化学物质的数据库,从 1600 多种 ToxCast/Tox21 HTS 测定法中确定了 157 种与人类肝毒性相关的测定法。然后,使用计算框架根据生物靶标或机制将这些测定法分为 52 种关键事件(KE)肝毒性模型。KE 模型的输出是一个 KE 评分,用于总结化学物质对与肝毒性相关的生物靶标或机制的效力。根据化学结构对肝毒性化学物质进行分组揭示了具有高 KE 评分的化学物质类别,这些化学物质类别的肝毒性机制很有可能。使用 KE 评分和有监督学习来预测体内肝毒性,包括毒代动力学信息,提高了预测性能。这种新方法可以成为各种化学毒性评估的通用计算毒理学策略。