Suppr超能文献

用于单图像超分辨率的软边缘辅助网络。

Soft-edge Assisted Network for Single Image Super-Resolution.

作者信息

Fang Faming, Li Juncheng, Zeng Tieyong

出版信息

IEEE Trans Image Process. 2020 Feb 24. doi: 10.1109/TIP.2020.2973769.

Abstract

The task of single image super-resolution (SISR) is a highly ill-posed inverse problem since reconstructing the highfrequency details from a low-resolution image is challenging. Most previous CNN-based super-resolution (SR) methods tend to directly learn the mapping from the low-resolution image to the high-resolution image through some complex convolutional neural networks. However, the method of blindly increasing the depth of the network is not the best choice because the performance improvement of such methods is marginal but the computational cost is huge. A more efficient method is to integrate the image prior knowledge into the model to assist the image reconstruction. Indeed, the soft-edge has been widely applied in many computer vision tasks as the role of an important image feature. In this paper, we propose a Soft-edge assisted Network (SeaNet) to reconstruct the high-quality SR image with the help of image soft-edge. The proposed SeaNet consists of three sub-nets: a rough image reconstruction network (RIRN), a soft-edge reconstruction network (Edge-Net), and an image refinement network (IRN). The complete reconstruction process consists of two stages. In Stage-I, the rough SR feature maps and the SR soft-edge are reconstructed by the RIRN and Edge-Net, respectively. In Stage-II, the outputs of the previous stages are fused and then feed to the IRN for high-quality SR image reconstruction. Extensive experiments show that our SeaNet converges rapidly and achieves excellent performance under the assistance of image soft-edge. The code is available at https://gitlab.com/junchenglee/seanet-pytorch.

摘要

单图像超分辨率(SISR)任务是一个严重不适定的逆问题,因为从低分辨率图像重建高频细节具有挑战性。大多数基于卷积神经网络(CNN)的先前超分辨率(SR)方法倾向于通过一些复杂的卷积神经网络直接学习从低分辨率图像到高分辨率图像的映射。然而,盲目增加网络深度的方法并非最佳选择,因为此类方法的性能提升微不足道,而计算成本却巨大。一种更有效的方法是将图像先验知识融入模型以辅助图像重建。事实上,软边缘作为一种重要的图像特征,已在许多计算机视觉任务中得到广泛应用。在本文中,我们提出了一种软边缘辅助网络(SeaNet),借助图像软边缘来重建高质量的超分辨率图像。所提出的SeaNet由三个子网组成:一个粗略图像重建网络(RIRN)、一个软边缘重建网络(Edge-Net)和一个图像细化网络(IRN)。完整的重建过程包括两个阶段。在第一阶段,分别由RIRN和Edge-Net重建粗略的超分辨率特征图和超分辨率软边缘。在第二阶段,将前一阶段的输出进行融合,然后输入到IRN进行高质量超分辨率图像重建。大量实验表明,我们的SeaNet在图像软边缘的辅助下收敛迅速并取得了优异的性能。代码可在https://gitlab.com/junchenglee/seanet-pytorch获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验